Idea: the Amsterdam Theorem Exchange

dr. Hans-Dieter A. Hiep (hdh@drheap.nl)

Declarative.Amsterdam Friday, November 7th, 2025

Outline

- 1. Recall: mathematical logic
- 2. What are solvable problems?
- 3. What is a theorem exchange?
- 4. Valuable problems: specialization and arbitrage
- 5. Dominating all cryptocurrencies

1/5. Mathematical logic

Syntax

- vocabulary/signature Σ constants 1, 2, 3, ... operators $+, \times$ relations <
- variables terms x + ystatements $\forall x \exists y (x + y = 0)$
- Finitary proofs syntactic consequence Γ ⊢ φ

Semantics

model/structure M domain/universe interpretation

- valuation $\rho(x)$ denotation $[\![t]\!]_{\rho}$ satisfaction $\mathcal{M} \models \varphi$
- infinitary intuitions semantic consequence $\Gamma \models \varphi$

Soundness and completeness (Gödel 1930)

1/5. Mathematical logic

Syntax

- ightharpoonup vocabulary/signature Σ constants $1,2,3,\ldots$ operators $+,\times$ relations \leq
- variables terms x + ystatements $\forall x \exists y (x + y = 0)$
- Finitary proofs syntactic consequence Γ ⊢ φ

Semantics

model/structure M domain/universe interpretation

- valuation $\rho(x)$ denotation $[t]_{\rho}$ satisfaction $\mathcal{M} \models \varphi$
- infinitary intuitions semantic consequence $\Gamma \models \varphi$

Soundness and completeness (Gödel 1930)

1/5. Mathematical logic

Syntax

- vocabulary/signature Σ constants $1, 2, 3, \ldots$ operators $+, \times$ relations \leq
- variables terms x + ystatements $\forall x \exists y (x + y = 0)$
- Finitary proofs syntactic consequence Γ ⊢ φ

Semantics

model/structure M domain/universe interpretation

- $\begin{array}{c} \blacktriangleright \text{ valuation } \rho(\mathbf{x}) \\ \text{ denotation } \llbracket t \rrbracket_{\rho} \\ \text{ satisfaction } \mathcal{M} \models \varphi \end{array}$
- infinitary intuitions semantic consequence $\Gamma \models \varphi$

Soundness and completeness (Gödel 1930)

- two formal systems: (A) for syntax, (B) for semantics for which soundness and completeness holds
- ightharpoonup a problem φ in theory Γ is **solvable** if either:
 - (Construction of proof) (A) shows Γ ⊢ φ ,
 - ightharpoons (B) shows $\Gamma \not\models \varphi$ (construction of counter-example)
- ▶ in a complete theory Γ, every problem φ is **decidable**: Γ $\vdash \varphi$ or Γ $\vdash \neg \varphi$

Incompleteness (Gödel 1931)

In a consistent, sufficiently expressive theory Γ (i.e. can do elementary arithmetic), $\operatorname{Con}(\Gamma)$ can not be decided by Γ .

- ▶ two formal systems: (A) for syntax, (B) for semantics for which soundness and completeness holds
- **>** a problem φ in theory Γ is **solvable** if either:

 - ightharpoonup (B) shows $\Gamma \not\models \varphi$ (construction of counter-example)
- ▶ in a complete theory Γ, every problem φ is **decidable**: Γ $\vdash \varphi$ or Γ $\vdash \neg \varphi$

Incompleteness (Gödel 1931)

In a consistent, sufficiently expressive theory Γ (i.e. can do elementary arithmetic), $\operatorname{Con}(\Gamma)$ can not be decided by Γ .

- two formal systems: (A) for syntax, (B) for semantics for which soundness and completeness holds
- **>** a problem φ in theory Γ is **solvable** if either:

 - ightharpoonup (B) shows $\Gamma \not\models \varphi$ (construction of counter-example)
- ▶ in a complete theory Γ , every problem φ is **decidable**: $\Gamma \vdash \varphi$ or $\Gamma \vdash \neg \varphi$

Incompleteness (Gödel 1931)

In a consistent, sufficiently expressive theory Γ (i.e. can do elementary arithmetic), $\operatorname{Con}(\Gamma)$ can not be decided by Γ .

- ▶ two formal systems: (A) for syntax, (B) for semantics for which soundness and completeness holds
- **>** a problem φ in theory Γ is **solvable** if either:

 - ightharpoonup (B) shows $\Gamma \not\models \varphi$ (construction of counter-example)
- ▶ in a complete theory Γ , every problem φ is **decidable**: $\Gamma \vdash \varphi$ or $\Gamma \vdash \neg \varphi$

Incompleteness (Gödel 1931)

In a consistent, sufficiently expressive theory Γ (i.e. can do elementary arithmetic), $\operatorname{Con}(\Gamma)$ can not be decided by Γ .

- two formal systems: (A) for syntax, (B) for semantics for which soundness and completeness holds
- **>** a problem φ in theory Γ is **solvable** if either:
 - ► (A) shows $\Gamma \vdash \varphi$, (construction of proof)
 - ightharpoonup (B) shows $\Gamma \not\models \varphi$ (construction of counter-example)
- ▶ in a complete theory Γ , every problem φ is **decidable**: $\Gamma \vdash \varphi$ or $\Gamma \vdash \neg \varphi$

Incompleteness (Gödel 1931)

In a consistent, sufficiently expressive theory Γ (i.e. can do elementary arithmetic), $\operatorname{Con}(\Gamma)$ can not be decided by Γ .

A problem is **solved** if proof or counter-example is constructed.

A problem is **outstanding** if not yet solved.

Imagine a system that:

- collects outstanding problems
- ▶ assigns monetary values $(\$,\pounds,\in)$ to outstanding problems
- at any time, solution and money can be exchanged
- concurrent solvers are motivated by earning money
- problems and their solutions may need perfect secrecy
- ightharpoonup public money ightarrow public solutions

IMPORTANT: Separation of power.

A problem is **solved** if proof or counter-example is constructed.

A problem is **outstanding** if not yet solved.

Imagine a system that:

- collects outstanding problems
- assigns monetary values (\$,£,€) to outstanding problems
- ▶ at any time, solution and money can be exchanged
- concurrent solvers are motivated by earning money
- problems and their solutions may need perfect secrecy
- ightharpoonup public money ightharpoonup public solutions

IMPORTANT: Separation of power.

A problem is **solved** if proof or counter-example is constructed.

A problem is **outstanding** if not yet solved.

Imagine a system that:

- collects outstanding problems
- assigns monetary values (\$,£,€) to outstanding problems
- at any time, solution and money can be exchanged
- concurrent solvers are motivated by earning money
- problems and their solutions may need perfect secrecy
- ightharpoonup public money ightharpoonup public solutions

IMPORTANT: Separation of power.

A problem is **solved** if proof or counter-example is constructed.

A problem is **outstanding** if not yet solved.

Imagine a system that:

- collects outstanding problems
- assigns monetary values (\$,£,€) to outstanding problems
- at any time, solution and money can be exchanged
- concurrent solvers are motivated by earning money
- problems and their solutions may need perfect secrecy
- ▶ public money → public solutions

IMPORTANT: Separation of power.

A problem is **solved** if proof or counter-example is constructed.

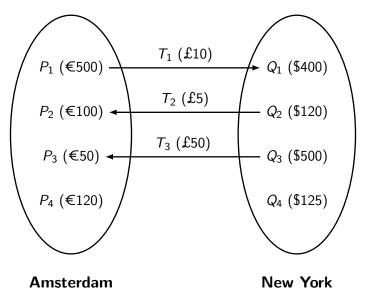
A problem is **outstanding** if not yet solved.

Imagine a system that:

- collects outstanding problems
- assigns monetary values (\$,£,€) to outstanding problems
- ▶ at any time, solution and money can be exchanged
- concurrent solvers are motivated by earning money
- problems and their solutions may need perfect secrecy
- ▶ public money → public solutions

IMPORTANT: Separation of power.

4/5. Valuable problems: specialization and arbitrage



5/5. Dominating all cryptocurrencies

Example problems:

- Reversing cryptographic functions on specific output
- Primality testing (NP and co-NP) and factoring
- Optimization and logistic problems
- Verifying semiconductor designs, gateware, firmware, ...
- Finding zero-day exploits
- etc.

Introducing the **Amsterdam Theorem Exchange**:

- ▶ a theorem exchange built on top of the SCION internet
- setting up not-for-profit, infrastructure at CWI
- transaction overhead (1%) funds fundamental research

5/5. Dominating all cryptocurrencies

Example problems:

- Reversing cryptographic functions on specific output
- Primality testing (NP and co-NP) and factoring
- Optimization and logistic problems
- Verifying semiconductor designs, gateware, firmware, ...
- Finding zero-day exploits
- etc.

Introducing the **Amsterdam Theorem Exchange**:

- a theorem exchange built on top of the SCION internet
- setting up not-for-profit, infrastructure at CWI
- lacktriangle transaction overhead (1%) funds fundamental research