
Declarative Music:
Using affix grammars

to compose music

Lambert Meertens

Declarative Amsterdam

8 November 2024

Intro

The year is 1962.

Kees Koster and I are undergraduate students at
the University of Amsterdam.

Instead of going to the boring lectures we are
supposed to follow, we attend graduate
seminars, such as a seminar “Machine and
Language”, where we read Chomsky’s book
Syntactic Structures.

Context-Free Grammar (CFG)

ALGOL 60 report (1960):

Chomsky (1957):

Back to 1962

Kees and I take it upon ourselves to give a demo
of the use of a CFG to generate grammatically
well-formed non-trivial English sentences.

Kees is to write the program (for the
Electrologica X1 of the Mathematical Centre,
now CWI).

My role is to supply the grammar.

Turning a grammar into a generator

SENT ➞ NP are COLOUR

NP ➞ roses | violets | lemons

COLOUR ➞ red | blue | yellow

def sent (): def colour ():

 np () cc = ['red', 'blue', 'yellow']

 print (' are') c = random.choice (cc)

 colour () print (' ' + c)

First attempt

SENT ➞ NP VERB | NP VERB NP

NP ➞ the boy | mice | grains | ...

VERB ➞ falls | like | ...

✓ the boy falls

✓ mice like grains

✗ the boy like mice

✗ mice falls

These sentences fail

subject–verb agreement

Second attempt

SENT ➞
NPsg VERBsg | NPsg VERBsg NPsg | NPsg VERBsg NPpl |

 NPpl VERBpl | NPpl VERBpl NPsg | NPpl VERBpl NPpl
NPsg ➞ the boy | ...

NPpl ➞ mice | grains | …
VERBsg ➞ falls | ...
VERBpl ➞ like | ...

✗ grains like

✗ mice falls the boy

These sentences fail

transitivity agreement

Agreement in English grammar

● number agreement between subject and verb
● transitivity agreement between verb and object
● person agreement between subject and verb
● case agreement of pronoun with grammar role

To take account of these requirements I would
have to replace the rules by multiple copies, and
then multiple copies of these multiple copies, and
multiple copies of multiple copies of multiple
copies, a horrible combinatorial explosion!

 Let the computer do the work!

Use a shorthand notation:

Write a program to expand this into:

SENT ➞ NPN VERBN | NPN VERBN NPN'
–––

N, N' ➞ sg, pl ☚ affix rule

SENT ➞
NPsg VERBsg | NPsg VERBsg NPsg | NPsg VERBsg NPpl |
NPpl VERBpl | NPpl VERBpl NPsg | NPpl VERBpl NPpl

 Fuse expansion with generation

Do not consider this notation to be shorthand:

Instead, view it as a new type of grammar in its
own right, a two-level grammar.

Thus, affix grammars were born.

(We finished the project in time for the demo, which went
smoothly, without a glitch.)

SENT ➞ NPN VERBN | NPN VERBN NPN'
–––

N, N' ➞ sg, pl

Affix grammars

An affix grammar has two levels of rules.

● The second level consists of affix rules, which
form a grammar for the affixes.

● The ground level has rule schemas, which are
like normal CFG rules, but nonterminal symbols
may have nonterminal affixes. These schemas
are turned into normal rules by the systematic
replacement of nonterminal affixes by terminal
affixes (such as, either replace each N in a
given schema by ‘sg’ or replace each N by ‘pl’).

The IFIP Competition

Computers & Automation,

 May 1967

A procedural grammar for rhythm

Affixes are modeled as procedure arguments:

def rhythm(duration):

 if unbroken(duration): # random decision

 tick(duration)

 else:

 rhythm(halve(duration))

 rhythm(duration – halve(duration))

A procedural grammar for melody

def melody(duration, height):

 if unbroken(duration):

 tone(height, duration)

 else:

 if ascending(): # random decision

 melody(halve(duration), height – 1)

 melody(duration – halve(duration), height)

 else:

 melody(halve(duration), height)

 melody(duration – halve(duration), height – 1)

In ALGOL 60

The result, String Quartet No. 1 in C

A longer account, with more emphasis on the musical
aspects, is given in:
● Lambert Meertens. An Early Experiment in

Algorithmic Composition. In: Gerard Alberts, Jan
Friso Groote, editors, Tales of Electrologica. History
of Computing. Springer, 2022

The score of the string quartet is available as:
● Lambert Meertens. Quartet No. 1 in C Major for 2

Violins, Viola and Violoncello. Mathematical Centre
Report MR 96. Mathematisch Centrum, Amsterdam,
1968 (https://ir.cwi.nl/pub/9184)

The same web page also has links to four mp3 files,
together a full performance from 1968 by the
Amsterdam String Quartet.

https://ir.cwi.nl/pub/9184

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

