mEEbE R

Declarative Music:
Using affix grammars
to compose music

Lambert Meertens

Declarative Amsterdam
8 November 2024

mEEbE R

Intro

The year Is 1962.

Kees Koster and | are undergraduate students at
the University of Amsterdam.

Instead of going to the boring lectures we are
supposed to follow, we attend graduate
seminars, such as a seminar “Machine and
Language”, where we read Chomsky’s book
Syntactic Structures.

mEEbE R

Context-Free Grammar (CFG)

In his book, Chomsky defines “Phrase Structure
Grammars”, a family of grammar formalisms
intended as a tool to describe natural languages.
In their simplest form these are the so-called
context-free grammars. To most participants of
the seminar this was something new.

Kees and | recognize CFG as something we are
familiar with: BNF, the grammar formalism used in
the Report on the Algorithmic Language ALGOL
60 to define a programming language.

Chomsky (1957): Sentence » NP + VP

NP->T+ N

VP— Verb+ NP

T - the

N — man, ball, etc.
Verb — hit, took, etc.

ALGOL 60 report (1960):

<assignment statement> ::=
{left part listd><arithmetic expression)|]
{left part listd(Boolean expression)d

{left part list)> ::=
<left part)|<left part listd><{left partd

{left partd> ::= <{variabled:=

mEEbE R

mEEbE R

Back to 1962

Kees and | take it upon ourselves to give a demo
of the use of a CFG to generate grammatically
well-formed non-trivial English sentences.

Kees Is to write the program (for the
Electrologica X1 of the Mathematical Centre,

now CWI).

My role Is to supply the grammar.

def sent(): def colour ():
np () cc = ['red’, 'blue’, 'yellow']
print(‘ are') ¢ = random.choice (cc)
colour() print(" ' + c)

H
Turning a grammar into a generator
SENT = NP are COLOUR
NP = roses | violets | lemons
g"i COLOUR = red | blue | yellow

mEEbE R

First attempt

SENT = NP VERB | NP VERB NP
NP = the boy | mice | grains | ...

VERB = falls | like | ...

v the boy falls
v mice like grains

X the boy like mice
X mice falls

These sentences fail
subject-verb agreement

mEEbE R

Second attempt

SENT =
NPsg VERBsg | NPsg VERBsg NPsg | NPsg VERBsg NPpi |
NPpl VERBpI | NPpl VERBpI NPsg | NPpl VERBp| NPpl

NPsg = the boy | ...
NPpl = mice | grains | ...
VERBsg = falls | ...
VERBp| = like | ...

X grains like These sentences fall
X mice falls the boy transitivity agreement

mEEbE R

Agreement in English grammar

* number agreement between subject and verb
* transitivity agreement between verb and object
* person agreement between subject and verb

* case agreement of pronoun with grammar role

To take account of these requirements | would
have to replace the rules by multiple copies, and
then multiple copies of these multiple copies, and
multiple copies of multiple copies of multiple
copies, a horrible combinatorial explosion!

mEEbE R

\'l

-C)- Let the computer do the work!

—
—
-

Use a shorthand notation:
SENT = NPNn VERBN | NPN VERBN NP

N, N' = sg, pl = affix rule

Write a program to expand this into:

SENT =
NPsg VERBsg | NPsg VERBsg NPsg | NPsg VERBsg NPp |
NPpl VERBp| | NPpl VERBpI NPsg | NPpl VERBpl NPpl

\'l

-@)- Fuse expansion with generation

—
—
-

Do not consider this notation to be shorthand:
SENT = NPn VERBN | NPN VERBN NPy

N, N' = sg, pl

Instead, view it as a new type of grammar in Its
own right, a two-level grammatrr.

Thus, affix grammars were born.

(We finished the project in time for the demo, which went
smoothly, without a glitch.)

mEEbE R

mEEbE R

Affix grammars
An affix grammar has two levels of rules.

* The second level consists of affix rules, which
form a grammar for the affixes.

* The ground level has rule schemas, which are
like normal CFG rules, but nonterminal symbols
may have nonterminal affixes. These schemas
are turned into normal rules by the systematic
replacement of nonterminal affixes by terminal
affixes (such as, either replace each N in a
given schema by ‘sg’ or replace each N by ‘pl’).

=T

The IFIP Competition

lntemaﬁona\ Federation for Information Processing
|FIP Congress Office

923 Dorset gquare
London; WwW. 1,

judged on musical merit, and medals will be awarded for the
best three pieces of music composed by computer: 1t is hoped

that the prizewmmng entries will be performed during
be held in Edinburgh from

ng — excluding general service rou"
s executed by the group (or by the 'mdividual).
i entry should be ot less than

three minutes and not 15 minutes.

3. Entries may be submitted in any of the following forms:
a) a score o
b) a recording accompan’xed b

struments 2r€ involve!
L hout @ Score (if the sound 18 produced

s golve

a score (where other in-

C
omputers & Automation

May 1967

mEEbE R

A procedural grammar for rhythm

Affixes are modeled as procedure arguments:

def rnythm(duration):
If unbroken(duration): # random decision
tick(duration)
else:
rhythm(halve(duration))
rhnythm(duration — halve(duration))

A procedural grammar for melody

def melody(duration, height):
If unbroken(duration):
tone(height, duration)
else:

If ascending(): # random decision
melody(halve(duration), height — 1)
melody(duration — halve(duration), height)

else:
melody(halve(duration), height)
melody(duration — halve(duration), height — 1)

mEEbE R

In ALGOL 60

procedure compose (melodic voice, num beats, left function code, right function code,
steady function, cadence, bars 1o 80, constant, new start, figurating, melos, rhythm, others,
max height, left branch, beat strength, right beat strength);

value melodic voice, num beats, left function code, right function code, steady function, cadence,

bars to go, constant, new start, figurating, melos, rhythm, others, max height, left branch,
beat strength, right beat strength;

integer melodic voice, num beats, left function code, right function code, bars to 80,
beat strength, right beat strength;,

real melos, rhythm, others, max height;

Boolean steady function, cadence, figurating, left branch;

Boolean array constant, new start, comment [soprano bass|;

begin integer voice, bass voice, voice 2. round, left right function code, right left function code,

Boolean array split upl[soprano bass); Boolean some split up, last of cadence;
real left melos, right melos, left rhythm, right rhythm;

bass voice := if melodic voice = bass then tenor else bass;

round := (left function code — right function code) | 3 + (num beats — 1) | mean cycle beats;
right function code = right function code + 3 x round;

if right function code < left function code then right function code = right function code + 3;

left right function code := (left function code + right function code) =+ 2;

if cadence N num beats = bars to go X bar beats N bars to go = 9 then

begin right left function code = right function code — bars to 80 = 2+ 1;
maxim (left right function code, right left function code — 1)

end else

right left function code = (left function code — left right function code +
right function code);

T - o & Livwo 4 an=1'.

The result, String Quartet No. 1in C

mEEbE R

A longer account, with more emphasis on the musical
aspects, is given in:

* Lambert Meertens. An Early Experiment in
Algorithmic Composition. In: Gerard Alberts, Jan
Friso Groote, editors, Tales of Electrologica. History
of Computing. Springer, 2022

The score of the string quartet is available as:

* Lambert Meertens. Quartet No. 1 in C Major for 2
Violins, Viola and Violoncello. Mathematical Centre
Report MR 96. Mathematisch Centrum, Amsterdam,
1968 (https://ir.cwi.nl/pub/9184)

The same web page also has links to four mp3 files,
together a full performance from 1968 by the
Amsterdam String Quartet.

https://ir.cwi.nl/pub/9184

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

