
In-source Testing in Answer Set Programming
Setup

Instructions at:

https://github.com/ejgroene/
declarative2024

or via:

https://
declarative.amsterdam/
program

click

type
or

Instructions als via link on program, follow link, README.md.

All examples, challenges and code snippets are there.

https://github.com/ejgroene/declarative2024
https://github.com/ejgroene/declarative2024
https://declarative.amsterdam/program
https://declarative.amsterdam/program
https://declarative.amsterdam/program

In-source Testing in
Answer Set

Programming

declarative 2024, Amsterdam
Erik J. Groeneveld

Welcome

Contents
• Setup code environment

• Who am I?

• What is In-source Testing

• How to test ASP programs

• Potassco, clingo

• Hands-on

• Questions

ASP
Introduction as

we go

Code samples in repo

Invite to join with code.

I love programming
• Programming

Languages

• (GW-)Basic

• Pascal

• C/C++

• Python

• Clojure

• Answer Set
Programming

• Metaprogramming

• Efficiency

• Size reduction

• Patterns & idioms

• Metaclasses

• Integration

• Extreme
Programming

• Push boundaries

• 1996: Baan R&D 
(research engineer)

• 1999: Software
Engineering Research
Centre (SERC)

• 2001: Owner of Seecr
(search with Lucene)

• 2024: Independent
(finally)

Seecr did Python before it became popular.

How it started…
• Railway Interlocking

• 0th Order Logic

• Design Automation

• Formal Specification

• Unit Testing

• Formal Methods

• => Higher Order Logic

ASP
* logic
* specs

* tests
* formal

methods

cross-compile

0th Order

Logic

Track, switches, routes and signals.

normaal_voorwaarde_h(T, Rijweg) :-  
 rijweg_ingesteld(T, Rijweg),  
 bgz(T, Rijweg),  
 sectie_vrij(T, Rijweg, Sectie) : rijweg_sectie(Rijweg, Sectie);  
 sts_passage(T, Rijweg, Wissel) : flankzonebewaking(Rijweg, Wissel);  
 virtueel_h(T, Rijweg) : vierdraadsAPB(Rijweg);  
 virtueel_d(T, Rijweg) : rijrichtingskering_zonder_bloksein(Rijweg).

Higher order logic

cross-compile

BOOL 190-192-H = (190-192-BGZ * 190-GZ-CS * 190-TP * 191-TP)  
BOOL 192-188-H = (189-TP * 190-TP * 191-TP * 192-188-BGZ *  
 192-GZ-CS * 192-TP * A178-TP)  
BOOL 192-190-H = (174C-TP * 190-TP * 191-TP * 192-190-BGZ  
 192-GZ-CS * 192-TP)

variables sets
(such-that)

ASP: rule, head, body, conjunction/and

0-orde: straight forward logic, top to bottom, no choice, implicit time

1-orde: variables

2-orde: sets (such-that)

Look at rule: clearly we need tests: 4 conditions, no less!

What is In-Source Testing?
• Put your test right between your code.

• Same language/file/class/function/compilation unit

• Runs on every import
real Python code

Tests also document the behaviour.

Executed on demand: on import

Regardless the context

CONTEXT is the CURRENT software CRISIS

Python

Clojure
Rust

Typescript

ASP

Almost silent until 2024, now, blogs begin to appear

Clojure is a bit more integrated: special function with asserts (not separate tests)

PRESS for ASP example: explain #program, facts and @-callouts

ASP

separate piece dependencies

facts

call to Python
function

“Pooling”; expands to:
sectie_vrij(0, rijweg32, “A”)
sectie_vrij(0, rijweg32, “B”)
sectie_vrij(0, rijweg32, “C”)

Explain #program, facts and @-callouts

; = pool expansion

Why In-source?
• Reduce test code base maintenance

• Automatic and deterministic collection of tests (import)

• Automatic subset selection

• Easier refactoring (move code)

• Intuitive test shifting from unit/integration/system

• Test different environments (tests part of program)

• Less framework’ish in general (more control, less magic)

You really have to try and experience it.

and now: ASP

Answer Set Programming
• What we need today:

• facts

• rules & variables

• constraints

• conditional literals

• aggregates

• optimisation

explained when
we meet them

party.lp

soda.lp

soda.lp: facts, choice, disjunction

clingo 0 soda.lp. => 1 answer ‘soda’ and not ‘drunk’. (Drunk is not there)

party.lp: set choice: 0 or more

2 choices: party or not, drink some or not. (See also party2.lp)

explain models

crash course ASP

see Codespace

we’ll repeat it when 
we meet them again

see code base!

not seen yet:

* disjunction

* constraint

* #count aggregate

main control

Potassco
• an ASP implementation by

University of Potsdam

• Try it online: https://
potassco.org/clingo/run/

• API’s

• C++/Python/Lua

• Embedded #script

• Callout @function

• Intercept

• Observer

• Propagator

• Main control

grounder Observer

Propagatorsolver

@functions

IF time: show what party.lp gets ground to:

beverage(wine,11).

beverage(beer,5).

beverage(soda,0).

{party}.

{drink(wine,11)}:-party.

{drink(beer,5)}:-party.

{drink(soda,0)}:-party.

#show party/0.

#show drink/2.

https://potassco.org/clingo/run/
https://potassco.org/clingo/run/

How to test ASP?
a #program
named test_… setup, fixtures etc

asserts

expected models @all:
 be in every model
@any:
 be in at least one model

an ACTUAL test from the main challenge

a DIFFERENT test than before

@all/@any are Python call-outs.

They register the assert so it can be check afterwards

ASP Test Idioms
sets => aggregate

{…} = 0 instead of ‘not step(_, _)’

implicit aggregate #count

aggregates: #sum, #count, #minimize operate on sets.

not step(…) would be optimised away

Design
asp-selftest (python)ASP

grounder

collect
asserts

solver

check &
report

facts

models

custom

standard

Hamiltonian Path
1

3

2

6

5

4

2

3

1

2

2
43

2

2

1

2

2

2

1

4

3

1

Hands-On (after the break)

hamiltonian-cycle-1.lp

We can’t fix the test ‘steps’ because:  
- first we need to understand the problem, so  
- run the code with clingo 0  
- there are 3 models with 3 paths  
- our test asserts 1 specific path  
- we cannot differentiate models

hamiltonian-cycle-2.lp

We number of steps issues a warning:  
- first understand the problem:  
- Clingo expands this rule for every node N.  
- The rule gets instantiated (grounded) for every node N  
- but the head remains the same every time  
- so we get a disjunction!  
- this is usually not intended, so it warns about it  
- fix it by introducing N in the head, for example:

assert(@all(“number of steps”, N)) :- …

hamiltonian-cycle-3.lp  
1/2 challenges:

1. relate steps and cost  
- there must be a model with specific costs and steps:  
 assert(@any("steps and costs")) :-  
 cost(11), { step(1,2; 2,5; 5,6; 6,3; 3,4; 4,1) } = 6

hamiltonian-cycle-3.lp  
2/2 challenges:

1. The challenge is to change the program so it accepts
single node graphs.

Solution:  
 next slide

Solution:

1. only choose a step when more than 1 node:  
step(A, B) : edge(A, B, _) :- { node(_) } > 1.

2. adjust the constraint on path:  
:- node(N), step(_, _), not path(N).

3. relax the ‘no self reference’ assert by adding:  
assert(@all("no self reference")) :- node_count(1).

4. allow for costs of zero in ‘cycle costs’:  
assert(@all("cycle cost”)) :-  
 node_count(N), cost(S), 0 <= S < 100.

5. only checks steps when more than 1 node:  
assert(@all("number of steps", N)) :-  
 node_count(N), N = { step(A, B) }, N > 1.

