
Declarative Amsterdam

2024

Tony Graham
XML Division

Antenna House, Inc.

tgraham@antenna.co.jp

tony@antennahouse.com

@tgraham_antenna

• What’s in a name?

• Prehistory

• XSL processing model

• Initial letters

• Overflowing text

• Comparison with CSS

• “XSL-FO” is undefined

• XSL Recommendation is:

– Transformation

– Formatting

• “XSL” these days refers to “XSLT”

– Except when it doesn’t

• “XSLT” means XSLT

• XSL (T + FO) builds on CSS and DSSSL

• “to define a style specification language

that covers at least the formatting

functionality of both CSS and DSSSL.”

• “CSS supports stream-based (or

‘incremental’ formatting) where possible”

• “CSS offers both readers and authors

control over the style”

• “avoiding an uncontrolled growth of HTML

extensions”

1996 1998 2008

DSSSL

XSL

• Applying font family, size, style, colour,

etc

• Superscripts, subscripts, alignment

baseline

• Height, width, margins, borders, and

padding

• Page size and orientation for each

page

• Headers and footers for each page

• Breaking long lines of text

• Stacking adjacent lines

• Breaking long blocks of text

• Keeping required minimum number of

lines before and after the break

• Aligning text in one or all of the lines

in a block

• Stacking adjacent blocks

• Formatting tables

• Hyphenation

• Honouring keeps and breaks

• Formatting footnotes and sidenotes

• Sizing and placing graphics

• Float graphics to the top (or

elsewhere) on the page

• Adjusting lines of text so a side float

does not overlap the text

• Generate drop capitals

• Treat a two-page spread as
one large page

• Add line numbers

• Generate output files as
multiple volumes

• Add marks at line breaks

• Force the document to be a
multiple of a fixed number of
pages

• Align text to defined tab stops

• Suppress content depending
on whether it is or isn't the first
content on a page

• Make lines of text fit to a
defined baseline grid

• Hang punctation characters at
the start and/or end of a line
into the margin

• Modify properties of text that
overflows an area to make text
fit its area

• Cut type

or print

separately

• Optically

align initial

to text

block

<fo:block xml:lang="en" keep-together.within-column="always“

 padding="0 20%"

 margin="0" text-align="justify" text-align-last="justify"

 font-family="serif" font-size="0.5em"

 axf:initial-letters="12em 2"

 text-indent="-1.2em"

 axf:initial-letters-end-indent="-1.8em -0.2em 0 -0.6em"

 >gazing on that which seems to dim thy sight? What seest

thou there? King Henry’s diadem, enchased with all the

honours of the world? If so, gaze on, and grovel on thy

face, until thy head be circled with the same.</fo:block>

• XSL 1.1: show, hide, or

error

• Adjust to condense to fit

• Fallback to next method if

reach limit

– font-size ➔ line-height ➔

font-stretch

<xsl:template

 match="div[@type = 'chapter']

 [exists(head[@type = 'sub'] |

 fw[@type = 'head'])]">

 <xsl:if

 test="exists(preceding-sibling::div

 [@type = current()/@type])">

 <fo:block axf:suppress-if-first-on-page="true"

 space-after="0.2in"

 space-after.precedence="force">

 <fo:external-graphic src="separator.svg" />

 </fo:block>

 </xsl:if>

 <fo:block

 id="{@type}-{count(preceding::div

 [@type = current()/@type]) + 1}">

<fo:block

 id="{@type}-{count(preceding::div

 [@type = current()/@type]) + 1}">

 <fo:block-container

 axf:baseline-grid="none"

 axf:baseline-block-snap="none"

 keep-together.within-page="always"

 keep-with-next.within-page="always"

 space-before="{

 if (exists(preceding::div[1]

 [@type = 'chapter']))

 then '0.5in'

 else '0.72in'}"

 space-before.conditionality="retain">

 <xsl:apply-templates select="head" />

 </fo:block-container>

 <xsl:apply-templates select="* except head" />

 </fo:block>

</xsl:template>

Yes?

div {

 font-size: 12pt;

 other-property: one of
myriad micro-syntaxes and
keywords;

}

No?

<script>
document.body.offsetTop;
document.getElementById('
target').style.height =
'50px’;
</script>

“The core features of the CSSOM are

oriented towards providing basic capabilities

to author-defined scripts to permit access to

and manipulation of style related state

information and processes.”

• Length (XSL-FO & CSS): 12pt, 4em, 20%

• Length-range (XSL-FO):
leader-length.minimum=0pt,
.optimum=12.0pt, .maximum=100%

• Length-conditional (XSL-FO):

.conditionality to retain or discard border

or padding at break

• Space (XSL-FO): .minimum, .optimum,

.maximum, .conditionality, and

.precedence – priority over adjacent

spaces

• XSL-FO: fo:marker in flow and fo:retrieve-

marker in static-content

– Generate fo:marker in XSLT stage

• CSS: Either ‘named strings’ or ‘running’

elements taken from the flow

– Generate ‘running’ elements how?

• CSS: 1-2 ‘running’

elements for all content

• XSL-FO: multiple

fo:marker and

fo:retrieve-marker for

parts of fo:static-content

Index keys

• fo:index-range-
begin

• fo:index-range-
end

• index-key

• index-class

Building the index

• fo:index-page-
citation-list

• merge-
sequential-page-
numbers

• fo:index-key-
reference

• Refer to IDs on pages

1, 3, 4, 4, 5, 6, 8, 8, 9

•

1, 3, 4, 4, 5, 6, 8, 8, 9

•

1, 3–6, 8, 9

• XSL formatter is a black box

• Everything is declared up-front

• Formatter lays out lines, blocks and pages

based on FOs and properties

• CSS is (or isn’t) just as declarative

• Some things easier (or possible) in XSL-FO

	Slide 1: XSL-FO More declarative than you know
	Slide 2: XSL-FO: More declarative than you know
	Slide 3: What’s in a name?
	Slide 4: Prehistory
	Slide 5: Original CSS goals
	Slide 6: Timeline
	Slide 7: XSL Processing Model
	Slide 8: Formatting stages
	Slide 9: XSL formatter handles…
	Slide 10: XSL formatter might also…
	Slide 11: Initial letters
	Slide 12
	Slide 13: Partially-raised initial “g”
	Slide 14: Declarative markup in 1986
	Slide 15: Overflowing text
	Slide 16: Chapter separator in ‘Moby-Dick’
	Slide 17: Automatic chapter separator
	Slide 18: Is CSS as declarative?
	Slide 19: CSS Object Model (CSSOM)
	Slide 20: Lengths and spaces
	Slide 21: Lengths and spaces
	Slide 22: Effect of margins and spaces
	Slide 23: Page regions in XSL-FO
	Slide 24: Static content directed to page regions
	Slide 25: CSS page-margin boxes
	Slide 26: Variable text in headers & footers
	Slide 27: S1000D footer?
	Slide 28: Spreads
	Slide 29: Indexes
	Slide 30: Indexes
	Slide 31: FOs and properties for indexes
	Slide 32: Merging page references in CSS
	Slide 33: XSL-FO: More declarative than you know
	Slide 34: References

