
Declarative Diagrams with
Mermaid

Nico Verwer
(Rakensi)

Part 1: Diagrams in software engineering

Part 2: Drawing diagrams declaratively

Part 3: Generating diagrams

Why use diagrams?
• A diagram is a symbolic representation of information using

visualization techniques.
• “Diagrams are simplified figures, caricatures in a way, intended to convey

essential meaning.” – Bert S. Hall

• Overview of the structure of one aspect of a complex system.
• Understand how complex systems work.
• Diagrams may help to solve problems.

• Help to communicate.
• Symbols are more universal than language.
• Enable users to provide feedback.

Diagrams for software engineering

• Flowcharts (1921)

• Nassi-Shneiderman (1972)

• ERD (1976)

• UML (1994)

• C4 (2006)

• Control flow / data flow

• Workflow

• Syntax diagram

• …

Diagrams don’t mean much
“A picture may be worth

a thousand words, a
formula is worth a

thousand pictures.”

Edsger W. Dijkstra, 1996
 (EWD1239: A first exploration of

effective reasoning)

“A picture is worth 10K words - but
only those to describe the picture.

Hardly any sets of 10K words can be
adequately described with pictures.”

Alan Perlis, 1982
(Epigrams on Programming)

[https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words] Photo by Andreas F. Borchert, CC BY-SA 4.0

Complexity, information content, …

… focus and meaning

Executable diagrams

• Shlaer–Mellor (1988) 🡪Executable UML (2002).

• xtUML.org (open source executable and translatable UML modeling).

Executable diagrams

• Apache Nifi
• Directed graphs of data routing,

transformation, and logic.
• Data pipelines as diagrams.

Executable diagrams

• YAWL BPM
• Uses Xquery.

Part 1: Diagrams in software engineering

Part 2: Drawing diagrams declaratively

Part 3: Generating diagrams

Tools to make diagrams

Declarative drawing

• Drawing boxes and lines: How.

• Specifying as code: What.

• Many implementations.
• textografo, flowchart.js, plantUML, kroki,

mingrammer, structurizr, yuml, mermaid

• Here we will use Mermaid.
• https://mermaid.js.org/
• https://mermaid.live/

https://mermaid.js.org/
https://mermaid.live/

Demo

• Example 1 (flow chart) mermaid.live VS code
• Example 2 (flow chart) VS code
• Example 3 (flow chart) VS code
• Example 4 (class diagram) VS code
• Example 5 (sequence diagram) VS code
• Example 6 (ER diagram) VS code
• Example 7 (other diagrams) VS code

https://mermaid.live/edit#pako:eNo1zsEKwjAMBuBXCTl42l6gB8FtR73oNZfYZm6wtlJTRMbe3VoZuXz5CeFf0UYnaHBc4ttOnBTOVwoUTtC2R-h29BS6ioFCv-M3XJc7HMBWOWzQS_I8u_J1pQBAqJN4ITSFTkbOixJS2MopZ423T7BoNGVpMD8dqwwzPxJ7NCMvr5KKmzWmy79pLbx9Ae5tOWc

Advantages of declarative diagram drawing

• Declarative, specify what to draw, not how.

• Maintenance: No re-arranging of boxes all the time.

• Interactive real-time updates, see the results immediately.

• Work on design with customer.

• Generate diagrams. (next)

• Execute diagrams?

Part 1: Diagrams in software engineering

Part 2: Drawing diagrams declaratively

Part 3: Generating diagrams

Diagrams for code analysis

• Used in development of a combo-select
web component for Benjamins.

• Web components respond to many events.

• More than 40 functions, close to 1000 lines.

• Many different code paths can be followed.

• The component became slow.

• Some functions were called 2 or 3 times
when certain events occurred.

Find functions that are called too often

The call graph as a Mermaid diagram

Parallel
paths

Call graph for the revised code

One call graph is not enough

Generating Mermaid code for a call graph

• Specific for web components.
• All paths start with the constructor or an event.
• https://github.com/nverwer/DA2023

• To do:
• Highlight parallel paths.
• Generalize to other types of code.
• Split diagrams at if – else branches.

• Future:
• Use iXML to parse Mermaid syntax and generate code?

Finding parallel paths

• Use an algorithm (in the original meaning of the word).
• Use widest path problem (Schulze method, Floyd-Warshall, Dijkstra).

• Use AI / LLM / GPT
• The “ultimate declarative programming language”,
• or a hallucinating stochastic parrot.

• Maybe just a glorified search engine.

• phind.com

Using Phind (ChatGPT) to find parallel paths

Trying to help Phind (ChatGPT)

Generating diagrams from descriptions

A content aggregation system consist of the
following components:

1. A number of connectors to external sources.
2. An extraction / transformation component that
gets content and updates from the external
sources.
3. A loader component that stores the transformed
content in the main database.
4. The main database stores the extracted and
transformed content.
5. A search engine that creates and updates a
search index for the content in the main database.
6. A query component that allows users to search
the aggregated content.

Please create a C4 context diagram for this using
Mermaid syntax.

Inspired by https://machinelearningmastery.com/generating-graphics-with-chatgpt/

Generate something more common

“How can a user interact with an
webapp and login using OAuth2?

Please generate a sequence diagram in
Mermaid syntax to explain.”

The result looks convincing,
but is slightly wrong.

Conclusion

• Using declarative syntax for diagrams can save time and effort.

• Fine-tuning layout is not possible
• But in many cases you should not want that.

• Generating diagrams from code can provide insights.
• But a real code analyzer may be more useful.

• Ai is not going to take our jobs yet.
• But the JSON generation should be worried?

