
The Semantic Web 
& Atomic Data
Joep Meindertsma, Declarative Amsterdam 2022-11-08

Slides: tiny.cc/atomicdata



2



3



4



5



6



7



8



How did we get here?
● Developers have to invent their own API, because:
● The web is not machine readable
● The web is not read/write (but it was tho)







Is the web not machine readable?
● HTML pages are documents, not data
● Tim Berners-Lee wanted to fix this, too…
● … with the Semantic web / RDF / Linked Data







HAIRDRESSER



So… we made it?

Not really…
Monopoly, not interoperability



URLs can make data linked and 
interoperable

● Why don’t we use them for, like, everything?
● URLs should represent things, not (HTML) strings!
● So Tim Berners-Lee came up with RDF!



Let’s upgrade a piece of 
information from sentence to RDF



Sentence

“Joep is born in Baarn on the 20th on january, 1991.”

Not machine readable



Table
Name City Birth Date

Joep Baarn 02-01-1991

1. Machine readable (query, sort, filter, serialize)
2. Still ambiguous

a. Who’s Joep? Where’s Baarn? How to interpret date?



Links

Name BirthPlace BirthDate

Joep Baarn 1991-01-20

1. Machine readable
2. Unambiguous (even in a global context, because URLs are global)
3. Browseable (we can open links and learn more)
4. Standardized (predicates can specify how they should be used)



RDF Triples
subject predicate object





We (Argu) went all-in on RDF
Because we believe in the merits of the semantic web 





Things we had to do
1. Make RDF work with React (link-redux)
2. Make RDF work with Rails (linked_rails)
3. Create a lot of ontologies
4. Invent a new RDF serialization format (hextuples)
5. Dynamic forms in RDF (powered by SHACL)
6. Full-text search

Read more @ ontola.io/blog/full-stack-linked-data/



And the more we built with RDF…
…the less hopeful I became



Why is the cloud not mostly 
Linked Data?

RDF is not attractive enough 
for developers



Why is the cloud not mostly 
Linked Data?

JSON > RDF



What makes RDF less attractive 
than JSON?

It’s not just the lack of tools & libraries



What makes RDF unattractive for devs

● Collections, Sequences, Bags… It’s confusing!
● Linked lists in RDF are fundamentally complex
● Works different in all serialization formats

Read more @ ontola.io/blog/ordered-data-in-rdf/

1. No native arrays



What makes RDF unattractive for devs

● A subject can have many triples with the same predicate, each 
with different datatypes

● Hard to store in Maps (and maps are easy and fast!)
● Hard to query => bad Developer Experience

(compared with JSON: thing.property)

2. No subject-predicate uniqueness



What makes RDF unattractive for devs

● Necessary, but are hard to store & query
● Name collisions
● A high cost for clients to deal with

3. Blank nodes



What makes RDF unattractive for devs

● Add an extra identifier that is required to filter and find a 
set of triples

● No consensus on best practice, lots of hacky usages

4. Named graphs



What makes RDF unattractive for devs

5. It’s hard to select a specific value

joep.birthDate = Date

someNamedGraph.joep.birthdate.filter(b.datatype == date)[0]

wish:

reality:



What makes RDF unattractive for devs

6. Lack of consensus on usage
● Many resources (most notably properties) do not resolve 

(data dumps, SPARQL / TPF endpoints, but not as resources!)
● Many different serialization formats used - no 

requirements on which is needed, which leads to fat clients 
with many parsers

● Highly fragmented documentation with a high focus on 
semantics instead of pragmatics



What makes RDF unattractive for devs

● Any predicate can have any datatype (string / bool / etc.)
● SHACL / SHEX are optional (and kind of complicated)

7. No type safety



What I’d like to have...

Take a (very) strict subset of RDF!

● Decentralized nature of RDF (lots of URLs)
● Easy for devs like JSON 
● Type-safe like typescript





Atomic Data is

● Resolvable RDF
● Idiomatic JSON 
● Fully Type-safe



How?
With strict Properties!



● JSON-AD as serialization
● @id must resolve to the actual JSON-AD resource
● Every key is a Property
● Properties have datatypes, triples can’t set their own!
● Shortnames can be used for easy mapping (to simple JSON)
● Descriptions can be used for semantic meaning
● See docs.atomicdata.dev

Atomic Properties



● E.g. BlogPost or Agent
● Describe which Properties are required and optional
● Can be used to validate data and show Forms
● Difference from RDF: schema tightly coupled to Class

Atomic Classes



Atomic Data Core
JSON-AD, Properties, Datatypes, Classes



Atomic Data Extended
Authorization, authentication, collections, more



Static data is relatively easy
But data changes over time, how can we deal with that?



What can we gain by
standardizing Changes?

● Versioning, history, global undo
● Verifiability for checking authorship, auditing
● P2P sharing
● So basically Git, but for structured data
● A read-write web! Collaboration everywhere



Atomic Commits

● Commits (changes) are resources, too, with their own 
URLs

● PK Cryptography is used for signing every single change
● So every change becomes reversible and verifiable
● And can therefore be shared peer to peer



Atomic Agents

● Agents are users with their own URLs
● Agents have a public key used for signing Commits
● They are also used for read / write authorization
● Authentication by signing every HTTP GET request



And More
● Endpoints (machine readable API docs)
● Collections (queries for sorting, filtering, pages)
● Invitations (easy sign up + redirect)
● Websockets (real time collaboration)
● File upload / download



A spec needs an implementation

● Atomic-server (graph database, written in Rust)
○ Fast: <1ms responses
○ 14mb binary, no runtime dependencies
○ Full-text search, indexed queries, sorting, filtering, 

pagination
○ Authorization, authentication, attachments, versioning

● Atomic-data-browser (GUI for viewing / editing)
○ Browse data, dynamic forms, tables, search, endpoints, 

collaborative documents



Time for a demo!
Follow along at atomicdata.dev



Getting started

● @tomic/lib for js, typescript, node projects
● @tomic/react for web GUIs (codesandbox template)
● atomic_lib (rust library, powers server)
● Everything mentioned is MIT licensed, so fully free & open 

source
● Check out the Discord and Docs!



Questions?
Joep Meindertsma, Declarative Amsterdam 2022-11-08

Slides: tiny.cc/atomicdata


