
Exploring the declarative nature of
XProc 3.0

Achim Berndzen
www.xml-project.com

Geert Bormans
www.c-moria.com

<xml-project />

Agenda:

- What do we mean by “declarative”?

- A quick look at XProc 3.0

- Declarative aspects of XProc 3.0

- Take aways

What do we mean by “declarative”?

Declarative languages Imperative languages

XProc 3.0

What do we mean by “declarative”?

Declarative languages Imperative languages

XProc 3.0

Fortran Basic

Java C

What do we mean by “declarative”?

Declarative languages Imperative languages

XProc 3.0

Fortran Basic

Java C

Haskell Prolog

XSLT SQL

XForms

What do we mean by “declarative”?

[…] declarative programming is a programming paradigm

[…] that expresses the logic of a computation without

describing its control flow. […] For example:

▪ A high-level program that describes what a

computation should perform.

▪ Any programming language that lacks side effects.

▪ A language with a clear correspondence to

mathematical logic.

What do we mean by “declarative”?

[…] declarative programming is a programming paradigm

[…] that expresses the logic of a computation without

describing its control flow. […] For example:

▪ A high-level program that describes what a

computation should perform.

▪ Any programming language that lacks side effects.

▪ A language with a clear correspondence to

mathematical logic.

What do we mean by “declarative”?

Declarative languages

XProc 3.0

▪ No side effects.

▪ No flow control.

▪ Describe what a computation should
perform.

What do we mean by “declarative”?

▪ No side effects?

Program

Piece of software e.g. function

Local variables

Global variables

External states

Excluding side effects by design makes software easier to debug or maintain
and allow better implementations. ➜ Deterministic functions in XPath.

What do we mean by “declarative”?

▪ No flow control?

▪ Imperative languages are different ways to
express flow control.

▪ Declarative language (try to) avoid flow control:
▪ First order logic, relational algebra, function

calculus, etc.
▪ The implementations have to figure out the flow

control for themselves.

What do we mean by “declarative”?

▪ Describe what a computation should perform?

▪ In other words: “describe the desired results without explicitly
listing commands or steps that must be performed.”

▪ The result can be described in natural language or a domain
specific expert language.

▪ The translation into a computer language is done by the
implementation.

▪ However: Describing steps to archive a result is a part of
natural languages and expert languages as well.

What do we mean by “declarative”?

▪ Describe what a computation should perform?

Prepare a Lasagna!

1. Prepare a Bolognese and a Bechamel.
2. Layer them with noodles and top with

cheese.
3. Bake for 40 minutes at 200C.

Lasagna recipe
from beginners

cookbook

Describing steps to produce a result can be on different
levels of abstraction.!

A (very) quick look at XProc 3.0

▪ XProc 3.0 is “a language for describing operations to be
performed on documents“. (spec)
▪ Pipelines specifying a sequence of operations
▪ Programming language
▪ XML based syntax

▪ XProc 3.0 has a formal specification as a result from a
Community Group effort

Simple example (functional)

Simple example (technical)

Simple example (code)
<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"

version="3.0">

<p:input port="source"/>

<p:output port="result"/>

<p:xslt version="3.0">

<p:with-input port="stylesheet" href="stylesheet1.xsl"/>

</p:xslt>

<p:xslt version="3.0">

<p:with-input port="stylesheet" href="stylesheet2.xsl"/>

</p:xslt>

</p:declare-step>

Somewhat more evolved example (functional)

Somewhat more evolved example (technical)

Somewhat more evolved example (code)
<p:identity name="src"/>

<p:xslt version="3.0" name="tfx2">

<p:with-input port="stylesheet" href="stylesheet2.xsl"/>

</p:xslt>

<p:identity>

<p:with-input pipe="@src"/>

</p:identity>

<p:xslt version="3.0">

<p:with-input port="stylesheet" href="stylesheet1.xsl"/>

</p:xslt>

<p:pack wrapper="pack">

<p:with-input port="alternate" pipe="@tfx2"/>

</p:pack>

References

▪ CG report (formal specification)
▪ https://spec.xproc.org/3.0/xproc/

▪ Standard step library
▪ https://spec.xproc.org/3.0/steps/

▪ Community Group
▪ https://www.w3.org/community/xproc-next/

▪ Mailing list
▪ xproc-dev-request@w3.org

▪ Introduction (entry point)
▪ https://xproc.org/introduction.html

Implementations (with published test results)

▪ MorganaXProc-III
▪ https://www.xml-project.com/morganaxproc-iii/
▪ Status test coverage: 100% *

▪ XML Calabash
▪ https://xmlcalabash.com/
▪ Status test coverage: 80% *

* https://test-suite.xproc.org/implementation.html

https://www.xml-project.com/morganaxproc-iii/
https://xmlcalabash.com/

Declarative aspects of XProc 3.0

Declarative languages

XProc 3.0

▪ No side effects.

▪ No flow control.

▪ Describe what a computation should
perform.

Recap:

Declarative aspects of XProc 3.0

No side effect?

▪ There are a lot of steps producing external side effects:
▪ p:store, p:http-request, p:file-delete, …
▪ Steps can even consume external side effects of other step

with p:store href=“x” and a later p:load href=“x”.
▪ Deterministic XPath functions yield different result when called

on different steps, i.e. are open to side effects.

Declarative aspects of XProc 3.0

No side effect?

▪ But: No side effects from changing global variable states!
▪ XProc 3.0 has global variable states, but the are immutable.
▪ You can declare a new variable with the same name and a

different value,
▪ but this new value will disappear at scope’s end.

Declarative aspects of XProc 3.0

No side effect?

int var = 4;

for (int i=1; i < 3; i++)

var = var +1;

System.out.println(var); /* var is 6 */

<p:variable name=“var” select=“4” />

<p:for-each> /*Iterate over a sequence of 2 docs*/

<p:variable name=“var” select=“$var +1” />

</p:for-each>

/*var is 4 */

Imperative, e.g. Java

Declarative aspect in XProc 3.0

Declarative aspects of XProc 3.0

No flow control?

▪ Imperative: Layout flow control.
▪ Declarative: Implementation creates flow control.

“XProc is a language in XML which provides a set of commands for
a flow control in order to generate XML oriented workflows.”
https://www.data2type.de/en/xml-xslt-xslfo/xproc

Case closed?

Declarative aspects of XProc 3.0

No flow control?

<p:validate-with-xml-schema name="schema-validation">

<p:with-input port="schema" href="schema.xsd" />

</p:validate-with-xml-schema>

<p:xslt name="xslt1">

<p:with-input port="stylesheet" href="style1.xsl" />

</p:xslt>

<p:store name="store1" href="result1.xml" />

<p:xslt name="xslt2">

<p:with-input pipe="@schema-validation" />

<p:with-input port="stylesheet" href="style2.xsl" />

</p:xslt>

<p:xsl-formatter content-type="application/pdf" />

<p:store name="store2" href="result.pdf" />

Declarative aspects of XProc 3.0

No flow control?

▪ XProc’s flow is not execution order!
▪ Connections only restricts execution order.

▪ validate >> transform1 >> store1
▪ validate >> transform2 >> pageformat >>store2

▪ Two concepts of “flow control”:
▪ Connection between steps vs.
▪ Computers execution plan.

▪ XProc engines evaluate execution plan(s).

Declarative aspects of XProc 3.0

Describe what a computation should perform?

Declarative aspects of XProc 3.0

<p:import href="lib-music.xpl"/>

<p:load href="dueling-banjos.mid" content-type="audio/midi"/>

<mox:convert-score content-type="application/xml"/>

<mox:convert-score content-type="application/pdf"/>

<p:store href="score.pdf"/>

Declarative aspects of XProc 3.0

<p:library xmlns:p="http://www.w3.org/ns/xproc"

xmlns:mox="http://www.xml-project.com/morganaxproc"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

version="3.0">

<p:declare-step type="mox:convert-score"

mox:class="mox.morganaxproc.midi.MidiHandler">

<p:input port="source" content-types="xml audio/midi"/>

<p:option name="content-type" required="true" as="xs:string"/>

<p:output port="result"/>

</p:declare-step>

</p:library>

Declarative aspects of XProc 3.0

Describe what a computation should perform?

Declarative aspects of XProc 3.0

<p:import href="lib-music.xpl"/>

<p:load href="dueling-banjos.mid" content-type="audio/midi"/>

<mox:convert-score content-type="application/xml"/>

<p:xslt version="3.0">

<p:with-input port="stylesheet" href="reduction.xsl"/>

<p:with-option name="parameters" select="map{'parts' : ('P1', 'P2')}"/>

</p:xslt>

<p:store href="score-reduced.xml" serialization="map{'indent' : true()}"/>

<mox:convert-score content-type="application/pdf"/>

<p:store href="score-reduced.pdf"/>

Take aways

Declarative languages

XProc 3.0

▪ No side effects.

▪ No flow control.

▪ Describe what a computation should
perform.

+/-

✅

✅

Why this talk?

▪ Add some body to the claim XProc has a declarative nature
▪ Provide a handle to claim

▪ XProc 3.0 helps solving problems in a short amount of time
▪ XProc 3.0 is easy to learn

Thank You
Questions?

Achim Berndzen
www.xml-project.com

Geert Bormans
www.c-moria.com

<xml-project />

