
Functional,
Declarative Audio

Applications

Nick Thompson

• Independent audio software 
developer, contractor, 
consultant

• Elementary Audio

• Creative Intent

• React-JUCE

Agenda

• Setting: What is Audio Software?

• The Golden Rules

• Traditional Audio Software Architecture

• A Declarative Approach

• Elementary Audio Drum Synthesis

Audio Software

Audio Software

Golden Rules

Realtime audio applications must deliver a block
of audio received from the driver back to that

driver without any discontinuity in the resulting
signal

Golden Rules

• Reliability

• Determinism

• Performance

• Typically, delivering an immense amount of
numerical computation with a few milliseconds

Traditional Architecture

• Typically C/C++:

• Direct access to memory

• Direct access to underlying platform or hardware

• Direct access to threading primitives

• Fair enough!

Traditional Architecture

Traditional Filter 101

class Processor {

public:

 // Called on the main thread

 void prepare (double sampleRate, int blockSize);

 // Called on the realtime thread

 void processBlock (AudioBlock& block);

};

Traditional Filter 101

class Processor {

public:

 // Called on the main thread

 void prepare (double sampleRate, int blockSize);

 // Called on the realtime thread

 void processBlock (AudioBlock& block);

private:

 BiquadFilter bq;

};

Traditional Filter 101

class Processor {

public:

 Processor()

 : bq(1, 0, 0, 0, 0) {}

 // Called on the main thread

 void prepare (double sampleRate, int blockSize);

 // Called on the realtime thread

 void processBlock (AudioBlock& block);

private:

 BiquadFilter bq;

};

Traditional Filter 101
class Processor {

public:

 Processor()

 : bq(1, 0, 0, 0, 0) {}

 // Called on the main thread

 void prepare (double sampleRate, int blockSize) {

 bq.prepare(sampleRate, blockSize);

 }

 // Called on the realtime thread

 void processBlock (AudioBlock& block);

private:

 BiquadFilter bq;

};

Traditional Filter 101
class Processor {

public:

 Processor()

 : bq(1, 0, 0, 0, 0) {}

 // Called on the main thread

 void prepare (double sampleRate, int blockSize) {

 bq.prepare(sampleRate, blockSize);

 }

 // Called on the realtime thread

 void processBlock (AudioBlock& block) {

 bq.processBlock(block);

 }

private:

 BiquadFilter bq;

};

Traditional Filter 101

What about Composition?

Traditional Filter 101
FloatVectorOperations::negate(xfadeGains, xfadeGains, len);

FloatVectorOperations::add(xfadeGains, 1.0f, len);

// Now we can handle the distorted low band

dsp::ProcessContextReplacing<SampleType> lowBandContext (lowBlock);

m_lowBandProcessor.process(lowBandContext);

addWithArrayMultiply(wetBlock, lowBlock, xfadeGains);

// And we can use the same gain array for the raw high band...

addWithArrayMultiply(wetBlock, highBlock, xfadeGains);

// Now we have to flip the xfade gain array for the distorted high band.

FloatVectorOperations::negate(xfadeGains, xfadeGains, len);

FloatVectorOperations::add(xfadeGains, 1.0f, len);

// And handle the high band...

dsp::ProcessContextReplacing<SampleType> highBandContext (highBlock);

m_highBandProcessor.process(highBandContext);

addWithArrayMultiply(wetBlock, highBlock, xfadeGains);

Traditional Filter 101

What about state changes?

Traditional Filter 101

class Processor {

public:

 ...

 // Called on the main thread

 void onUserInput (double newFrequency) {

 auto const cs = computeCoeffs(newFrequency);

 bq.b0 = cs[0];

 bq.b1 = cs[1];

 bq.b2 = cs[2];

 ...

 }

 ...

};

Traditional Filter 101
class Processor {

public:

 ...

 // Called on the main thread

 void onUserInput (double newFrequency) {

 auto const cs = computeCoeffs(newFrequency);

 // Assume type std::atomic<Coefficients>

 bq.coeffs.store(BiquadFilter::Coefficients {

 cs[0],

 cs[1],

 cs[2],

 ...

 });

 }

 ...

};

Traditional Filter 101

Takeaway: it's hard!

A Declarative Approach

A Declarative Approach

y(x, t) = f(x(t))

or maybe

y(x, t) = f(x(t), t)

A Declarative Approach

y(x, t) = filter(x(t))

 where

 filter(x(t)) = lowpass(800Hz, 1.414, x(t))

 lowpass(hz, q, x(t)) =

 b0, b1, b2, a1, a2 = computeCoeffs(hz, q)

 biquad(b0, b1, b2, a1, a2, x(t))

A Declarative Approach

y(x, t) = filter(x(t))

 where

 filter(x(t)) = sum(

 lowpass(800Hz, 1.414, x(t)),

 highpass(2000Hz, 1.414, x(t)),

)

Elementary Audio

A JavaScript framework for functional, declarative
expression of realtime audio signal processes.

+

A native audio engine to deliver a high

performance realization of the given audio
process.

Elementary Audio

import {

 ElementaryWebAudioRenderer as core,

 el

} from '@nick-thompson/elementary';

core.on('load', function(e) {

 let x_of_t = el.in({channel: 0});

 let y_of_t = el.lowpass(800, 1.414, x_of_t);

 core.render(y_of_t);

});

Elementary Audio
import {

 ElementaryWebAudioRenderer as core,

 el

} from '@nick-thompson/elementary';

function myRender(cutoff) {

 let x_of_t = el.in({channel: 0});

 let y_of_t = el.lowpass(cutoff, 1.414, x_of_t);

 core.render(y_of_t);

});

core.on('load', (e) => myRender(800));

core.on('change', (newCutoff) => myRender(newCutoff));

Drum Synthesis

Demo!

Thank You

• Me

• https://www.nickwritesablog.com/

• https://github.com/nick-thompson/

• Elementary Audio

• https://www.elementary.audio/

