Functional,
Declarative Audio
Applications

<Z

Nick Thompson

e Independent audio software
developer, contractor,
consultant

e Elementary Audio

e (Creative Intent

e React-JUCE

Agenda

e Setting: What is Audio Software?

e The Golden Rules

e T[raditional Audio Software Architecture
e A Declarative Approach

e Elementary Audio Drum Synthesis

Audio Software

Audio Software

RAROWARE SoftwiAls

A L

Golden Rules

Realtime audio applications must deliver a block
of audio received from the driver back to that
driver without any discontinuity in the resulting

signal

Golden Rules

e Reliability
e Determinism
e Performance

e Jypically, delivering an immense amount of
numerical computation with a few milliseconds

Traditional Architecture

o Typically C/C++:
e Direct access to memory
e Direct access to underlying platform or hardware
e Direct access to threading primitives

e Fair enough!

Traditional Architecture

PrIVER

Traditional Filter 101

class Processor {
public:
// Called on the main thread
void prepare (double sampleRate, int blockSize);

// Called on the realtime thread
vold processBlock (AudioBlock& block);

s

Traditional Filter 101

class Processor {
public:
// Called on the main thread
void prepare (double sampleRate, int blockSize);

// Called on the realtime thread
vold processBlock (AudioBlock& block);

s

Traditional Filter 101

class Processor {
public:

// Called on the main thread
void prepare (double sampleRate, int blockSize);

// Called on the realtime thread
vold processBlock (AudioBlock& block);

private:
BiquadFilter bg;

s

Traditional Filter 101

class Processor {
public:
Processor()
: bq(1, 0, 0, 0, @) {}

// Called on the main thread
void prepare (double sampleRate, int blockSize) {

¥

// Called on the realtime thread
vold processBlock (AudioBlock& block);

private:
BiquadFilter bg;

s

Traditional Filter 101

class Processor {
public:
Processor()
: ba(1, 0, 0, 0, @) {}

// Called on the main thread
void prepare (double sampleRate, int blockSize) {
bg.prepare(sampleRate, blockSize);

¥

// Called on the realtime thread
void processBlock (AudioBlock& block) {

h

private:
BiquadFilter bg;

s

Traditional Filter 101

What about Composition?

Traditional Filter 101

FloatVectorOperations: :negate(xfadeGains, xfadeGains, len);
FloatVectorOperations: :add(xfadeGains, 1.0f, len);

// Now we can handle the distorted low band

dsp: :ProcessContextReplacing<SampleType> lowBandContext (lowBlock);
m_lowBandProcessor.process(lowBandContext);
addWithArrayMultiply(wetBlock, lowBlock, xfadeGains);

// And we can use the same gain array for the raw high band...
addWithArrayMultiply(wetBlock, highBlock, xfadeGains);

// Now we have to flip the xfade gain array for the distorted high band.
FloatVectorOperations: :negate(xfadeGains, xfadeGains, len);
FloatVectorOperations: :add(xfadeGains, 1.0f, len);

// And handle the high band...

dsp: :ProcessContextReplacing<SampleType> highBandContext ChighBlock);
m_highBandProcessor.processChighBandContext);
addWithArrayMultiply(wetBlock, highBlock, xfadeGains);

Traditional Filter 101

What about state changes?

Traditional Filter 101

class Processor {
public:

Traditional Filter 101

class Processor {
public:

// Called on the main thread
void onUserInput (double newFrequency) {
auto const c¢s = computeCoeffs(newFrequency);

s

Traditional Filter 101

Takeaway: it's hard!

A Declarative Approach

A Declarative Approach

y(x, t) = t(x(t))

or maybe
yCX, t) = f(X(t), t)

A Declarative Approach

y(x, t) = filter(x(t))
where
filter(x(t)) = lowpass(800Hz, 1.414, x(t))
lowpass(Chz, g, x(t)) =
bd, bl, b2, al, a2 = computeCoeffsChz, q)
biquad(b@, bl, b2, al, aZ2, x(t))

A Declarative Approach

y(x, t) = filter(x(t))

where

Elementary Audio

A JavaScript framework for functional, declarative
expression of realtime audio signal processes.
+
A native audio engine to deliver a high
performance realization of the given audio

Process.

Elementary Audio

import {
ElementaryWebAudioRenderer as core,

el
y from '@nick-thompson/elementary’;

core.on('load', function(e) {
let x_of_t = el.in({channel: 0});
let y_of_t = el.lowpass(800, 1.414, x_of_t);
core.render(y_of_t);

1)

Elementary Audio

import {
ElementaryWebAudioRenderer as core,
el

}+ from '@nick-thompson/elementary’;

let x_of_t = el.in({channel: 0});
let y_of_t = el.lowpass(, 1.414, x_of_t);
core.render(y_of_t);

Drum Synthesis

Demo!

Thank You

e Me
e https://www.nickwritesablog.com/
e https://github.com/nick-thompson/
e Elementary Audio

e https://www.elementary.audio/

<z Elementary

