Success factors and pitfalls of
declarative techniques

Powe’,ed b

Nico Verwer

3 y
(Rakensi, Netherlands) Q”ﬁ%
= Gmy
f(_a;éensf

wor informatieverwerking

Declarative programming may not seem to be widespread, but it has been used for
several decades in some areas of information technology. Examples are SQL for
qguerying databases, and regular expressions and grammars for text analysis. More
recently, domain-specific languages have been used to take advantage of declarative
methods, with varying degrees of success. What can we learn from the successful
applications of declarative programming? And perhaps more importantly, is there
something that failed applications have in common? In this presentation we will look
at what makes a declarative technique successful. We will also look at two pitfalls
that the author has encountered many times: genericity and reification.

What is “Declarative”?

Practical Advantages of Declarative Programming

J.W. Lloyd (1994)
Department of Computer Science
' University of Bristol
Bristol, BS8 1TR, U.K.

Informally, declarative programming involves stating wha is to be computed, but not
necessarily how it is to be computed. Equivalently, in the terminology of Kowalski’s
equation algerithm = logic + control, it involves stating the logic of an algorithm, but
not necessarily the control. This informal definition does indeed capture the intuitive
idea of declarative programming, but a more detailed analysis is needed so that the
practical advantages of the declarative approach to programming can be explained.

I begin this analysis with what I consider to be the key idea of declarative pro-
gramming, which is that

+ a program is a theory (in some suitable logic), and
+ computation is deduction from the theory.

‘What logics are suitable? The main requirements are that the logic should have a
model theory, a proof theory, a soundness theorem (that is, computed answers should
be correct), and, preferably, a completeness theorem (that is, correct answers should
be computed). Thus most of the better-known logics including first order logic and

A Note on Declarative Programming Paradigms
and the Future of Definitional Programming

(1996)

Olof Torgersson™

i N e N

Abstract

We discuss some approaches to declarative programming in-
cluding functional programming, various logic programming
languages and extensions, and definitional programming. In
particular we discuss the programmers need and possibilities
to influence the control part of programs. We also discuss
some problems of the definitional programming language
GCLA and try to find directions for future research into
definitional programming.

Functional + logic Definitional programming
e Escher * GCLA
* Nucleoid.org

Before we continue, let’s briefly restate what “declarative” is. Here are two papers

from the 1990’s.

“Declarative programming involves stating _what_ is to be computed, but not

necessarily _how_ it is to be computed.”

Functional programming, logic programming, definitional programming (more

general).

Nucleoid is an open source (Apache 2.0), a runtime environment that allows
declarative programming written in ES6 (JavaScript) syntax. Since statements are
declarative, the runtime provides logical integrity, plasticity and persistency as hiding

technical details.

Complexity in software

* Programmer effort is proportional to
complexity” where n > 1
* Halstead metrics
* Boehm, COCOMO

100000

10000

* Boehm predicted that software costs

would overwhelm hardware costs. 1000

* 1973, “Ada - The Project : The DoD High e
Order Language Working Group” e
* Moore’s switch 0
* Steven Pemberton (2019) 1

1950 1960 1970 1980 1990 2000 2010 2020

* Compared to the cost of a programmer, a

. Relative costs of computers and programmers, 1957-now
computer is almost free.

(from Steven Pemberton: Declarative vs. Procedural)

In an important 1973 report entitled "Ada - The Project : The DoD High Order
Language Working Group" to the Defense Advanced Research Projects Agency
(DARPA),ZI Boehm predicted that software costs would overwhelm hardware costs.
DARPA had expected him to predict that hardware would remain the biggest
problem, encouraging them to invest in even larger computers. The report inspired a
change of direction in computing.

Essential vs. Accidental Complexity

* Frederick P. Brooks, No Silver Bullet (1986) 1o Siluer Bullet
* “we cannot expect ever to see two-fold gains every two years” in
software development, as there is in hardware development Essence and Accidents of
Software Engineering

* Essential complexity:
* caused by the characteristics of the problem to be solved e P
and cannot be reduced.

* Accidental complexity:
* problems which engineers create and can fix
« difficulties due to the chosen software engineering tools
* difficulties arising from the technical solution
* lack of using the domain to frame the form of the solution

Fred Brooks, author of “The Mythical Man-Month” also observed that software costs

were overwhelming hardware costs.
Software development is hard, because of its complexity. But there are two kinds of

complexity: Essential an Accidental.

Reducing complexity

Essential complexity cannot be reduced
Reduce accidental complexity, which tends to grow over time

Fools ignore complexity.
Pragmatists suffer it.

Some can avoid it.

Geniuses remove it.

- Epigrams on Programming, Alan Perlis,
first recipient of the Turing Award

ﬁ‘-}/\ Accidental complexity

Essential complexity

* Declarative techniques
reduce accidental complexity | —)
by S peCIfyI ng What' nOt hOW Grewe, Axel et. al. (2017). Automotive Software Product Line Architecture

Evolution: Extracting, Designing and Managing Architectural Concepts.

Why is it so difficult to reduce complexity? Why are declarative techniques not used
everywhere?

Engineers like complexity

* It gives a sense of doing something
* Everyone thinks that they are very clever

* They see themselves as software engineers, not
domain experts

Well... It certainly is
complicated! I'm sure our clients
will be very, very impressed!

M Lﬂ\\tj \no\s e\eﬁance -Founcl so M‘He
-Po“oooinﬁ? —n\o} is H\e ream's OP it
E\ESane \nas H\e chso\clvon}’oﬁe,

i-P H\a)’ls w\no\)’ i)’ is, H\o} \harcl ooork is neeclerj }’o
ac}\ieve i+ ancl a 300::‘ ecluco}ion Yo QFFrECiQ% it

‘Well done , Jenkins!

- Edsger W. Dijkstra

The most difficult is to understand the essential complexity thoroughly.
Understanding and creating accidental complexity is easy.

One source of accidental complexity is lack of using the domain to frame the form of
the solution.

Picture source: http://antipatterns.com/briefing/sld015.htm

The manager’s way to reduce effort

* Making software has been, and will always be difficult
* | have no way to do anything about that

* Better make the software generic, so we have to make it only once
(and the rest is just configuration)

THE SALES ESTIMATE THAT LOOKS LIKE
LOOKS LIKE THIS. THE CHART YOU SHOWED SJKED%OR%;,Q?:J ?)N
US YESTERDAY ABOUT THIS ONE CHART.

OUR TRAVEL BUDGET.

@ScoftAdamsSays

P

Dilbert.com

[]-13-IC @ 2015 Scott Adams, Inc. /Dist. by Universal Uslick

Managers ask more often to make everything generic. The idea is that something
generic “only needs to be configured”.

Sometimes | suggest that the most generic software is a C compiler, and that the C
stands for ‘configuration’.

Success factors of declarative techniques

* Reducing accidental complexity

* More Edsger Dijkstra quotes:
* Simplicity is prerequisite Por reliability.
* About the use o]f’ language: it is imFOSSi)D\e Yo s}mr)oen o pencil with o blunt
axe. Lt is equally vain Yo hry to do i with Yen blunt axes instead.
* The competent programmer is fUlly oware of? the limited size of” his own skull.

He H\ere{)ore Q}o}oroac\wes \'\is)‘0‘5}2 wiH\ Pu“ \'\umi\i)'b, omcl Qvoicls c\ever ;'ric}zs m?e
Fhe P\aﬁue.

U. S. AIR FORCE

PROJECT RAND

RESEARCH MEMORANDUM

Regular Expressions

REPRESENTATION OF EVENTS IN KERVE NETS AND
FINITE AUTOMATA

S. Cu Klesne

* Invented by Stephen Cole Kleene in 1951

* Describe what a neural net (in 1951) or a state
machine does, not how
* Omit start, end, and other state labels

15 December 1951

* https://youtu.be/528Jc3q86F8

This Computerphile video about the history of regular expressions:
https://youtu.be/528)c3q86F8

Domain Specific Languages

e SQL

* relational algebra

* operations on the underlying data model (what, not how)
* XSLT

* pattern matching on the input to drive computation

* operations on the underlying data model (what, not how)

* Xforms
* interactive view on data model
* operations on the underlying data model (what, not how)

* LINQ, GraphViz, Vega

* DSLs do not by definition reduce complexity, effort, cost

Declarative languages are often domain specific — operate on a specific data model.

Not all DSLs are declarative!
This slide lists some DSLs that | think are successful declarative programming
languages.

https://vega.github.io/vega/ - Vega — A Visualization Grammar

Making a DSL is easy, making a useful one is not.

10

Pitfalls of declarative techniques

* Genericity
* Not being specific, widely applicable (configurable)
* Complex technical meta-model
* When configuration becomes Turing complete...

* Reification
* Making an abstract concept into an explicit data object
* Objects that only represent something else

 Data Transfer Object (DTO); represents data storage, not a domain entity
(but DTOs were better than entity beans in EJB < 3.0)

Both genericity and reification can be useful. They can also be dangerous.

EJB is a prime example of accidental complexity. Many ‘frameworks’ start out useful
and grow into bloated swiss army knives.
https://playingintheworldgame.com/2013/10/28/the-ultimate-swiss-army-knife-
1880-version/

11

Aside: Enterprise software

* Conway’s Law: “Any organization that designs a system will produce a
design whose structure is a copy of the organization’s communication
structure.”

enterprisey
ESB - Erroneous Spaghetti Box?

Enterprisey is anything that is clearly part of the enterprise culture.

A culture where buzzy words are often used to talk about simple concepts but they] I I
do it that way so they can look smart inside that culture and impress outsiders. Enterprise Service Bus

The term enterprisey is used to be explicit on the criticism of such behavior.

PC guy: this is so cool, how did you improved this software?
mac guy: easy, I've added a delay of 3 seconds to every action and now users are
feeling it's enterprisey

small business owner: I'm tired of presenting good projects and getting rejected,
what's wrong with these people?
colleague: they only want their bloated, hyperexpensive projects approved because =

they're trapped in their enterpriseyness. The're surely saying one to each other: "hey, D My Bus Look Big in This? Jim Webber & Martin F |
oes My Bus Look Big in This? Jim Webber artin Fowler

nobody got fired for hiring 1BM"

Enterprise software is difficult. Consultants make it seem easy by using lots of
buzzwords that would solve the difficult parts.

Does your software have exponential blockchain user experience ; loT SAAS SPA API ;
agile cloud computing algorithm mashup ; full-stack mobile-first responsive design ;
disruptive serverless microservice toolchain ; crypto ecosystem vapourware ;
actionable holistic business-IT alignment convergence ; multichannel devops
microblogging web 2.0 engine framework.

Instead of focusing on understanding essential complexity, the essential complexity is
hidden under a layer of accidental complexity.
An ESB looks on the outside like “everything is easy”.

12

Publishing from multiple content sources

* Every content source has its own DTD (~ 2005).

<

Why do we have so many The content sources we Make one Eh...
DTD’s. That’s a complete import have different DTD for Well...
waste. Can’t you make it structures, which we need everything.

How hard

to validate.

\

generic? - Okay then...

can that be?

Dilbericom DilbertCanoonisbfgmail com

1HE-0T 2000 Soott Adams, Inc./Disl. by UFS, Inc.

JIC

Around 2005, | worked for a company that had many content sources.
At the time, there was this hype about integrating many content sources in a flexible
(generic) way, and publishing to many channels (paper, CD-ROM, Web, ...)

13

Making a generic <XYZ>

Make XYZ generic, so
we have to develop it
only once!

If I make XYZ an
instance of XYZ itself,
| can modify it easily.

Note on the following slides:

Code samples, identifiers, and programmer or company names are
either the products of the author’s imagination or used in a fictitious
manner. Any resemblance to actual software developers, living or
dead, or actual program code is purely coincidental.

14

Reification: the “Thing DTD”

* A “thing” is something with “things”.
<!DOCTYPE element [

<!ELEMENT

<!ATTLIST

<!ELEMENT

<!ATTLIST

<!ATTLIST

<!ELEMENT
1>

element (attribute* , content?)>
element name CDATA #REQUIRED>
attribute EMPTY>

attribute name CDATA #REQUIRED>
attribute value CDATA #REQUIRED>
content (#PCDATA | element)* >

<element name="“page">
<attribute name="type" value="“slide"/>

<content>

One size fits all >
most generic!

Easy to translate
from and into any
original format!

No more
validation errors!

<element name="title"><content>The “thing” DTD</content></element>
The most generic DTD is also the most useless.

</content>
</element>

Any XML document, regardless of the DTD or schema, can be converted to an XML
document using the “Thing DTD”, and back.

What'’s not to like?

This is Genericity by Reification: Describe X in X. Call it a meta-model.

15

Generic databases

* Database schemes are hard to change
because only the DBA is authorized to do that

* Make the database within the database
(in 2020 speak: Software Defined Database)

* Bonus: Also store code in the DB and
bypass the cumbersome deployment process

Only one
database schema
for all storage!

relation

| have seen databases used in this way more than once.

16

d
- ”
' \
el §
l!ii..ilnfé.?/x/?. ”
W

T 000! aommatt MmUY B A M PRI A TP
e oo L A M PP Y SV S o e

o O 0001 AL LI IO ALY 2 2 F AN

L () [l1lAKE SlAl e

o = O LIS FRAPE A A

1 A L R S

Reification is often used in linked data, usually because of perceived limitations of

RDF and other representations.

17

Doing Scrum with the wrong tool (TFS)

L

Microsoft
Team Foundation Server

New 51h Active Resolved Clased
8l 168 POC C# add-in Excel 267 Review 266 PoC opzetten n
. uitvoeren volgens document o
@ e sk B urassignes . [ﬁ@ H w
§ Nico N Verwer
Staf ® Activé
Story Po.. 5 268 Testen ﬁ
269 Story closen
< []
1232 ATG BUG - 1240 Reviewen 1239 Bouwen

Controleren op template

structuur bij doorzetten van Iﬂ Unassigned * B k) g | B D) feijden
ATG files naar ATB
L O 1242 Story Closen + DoD 1241 Testen
State ® Active E Unassigned 27 Tino\Hhy
3

The tools that software developers use also provide opportunities to make them
more generic using reification.

TFS does not support the usual scrum board columns “review” and “test”,

and “resolved” can only be used for bugs, not stories.

To be fair, TFS allows for some customizations, but | never met a TFS admin who knew
(how to do) that.

So we split up the phases of a story, and have tasks for ‘active’, ‘review’, ‘test’, ‘close’.
These become activities, not states.

This can create inconsistencies, as in the second example. It also splits the history of a
user story across tasks.

18

Reification with XSLT

<xsl:template match="dcterms.creator">
<creator-id function=*lookup-organisation">
<param name="organisation">
<xsl:value-of select="." />

</param> <xsl:template match="/*[@function]">

< —-id>
/creator-id <xsl:choose>

</xsl:template> <xsl:when test="@function = 'lookup-organisation'">

<xsl:variable name=“org”
select="param[@name = 'organisatie']"
as="xs:string"/>

<xsl:variable name="org-id” select=*.. $org .."
as="xs:string"/>

</xsl:when>

This makes a function call into an XML element in the ‘analysis phase’, in order to
execute the function in a later ‘enhancement phase’.

This was supposed to lead to “separation of concerns”.

Just calling a function in XSLT is not very interesting for software developers. Anyone
can do that.

19

Conclusion

* Genericity may seem to reduce effort

* Reification may seem to provide flexibility

* Often they lead to more accidental complexity

* Declarative techniques can provide reduced effort and flexibility

by removing accidental complexity

* Specify what, not how,
but first ask “why?”

|

CAN YOU PASS
THE SALT?

J

()

(e

I sAD-
T KNOW! TH DEVELOPING
Kﬂ SYSTEM T PASS YOU
ARBITRARY CONDIMENTS.
IT5 BEEN 20)

MINUTES!
), ITLL SAVE TIME
IN THE LONG RuN!

\.4:‘
=

Picture source: https://xkcd.com/974/

20

