
Success factors and pitfalls of 
declarative techniques

Nico Verwer
(Rakensi, Netherlands)

Declarative programming may not seem to be widespread, but it has been used for 
several decades in some areas of information technology. Examples are SQL for 
querying databases, and regular expressions and grammars for text analysis. More 
recently, domain-specific languages have been used to take advantage of declarative 
methods, with varying degrees of success. What can we learn from the successful 
applications of declarative programming? And perhaps more importantly, is there 
something that failed applications have in common? In this presentation we will look 
at what makes a declarative technique successful. We will also look at two pitfalls 
that the author has encountered many times: genericity and reification.

1



What is “Declarative”?

(1994) (1996)

Definitional programming
• GCLA
• Nucleoid.org

Functional + logic
• Escher

Before we continue, let’s briefly restate what “declarative” is. Here are two papers 
from the 1990’s.

“Declarative programming involves stating _what_ is to be computed, but not 
necessarily _how_ it is to be computed.”

Functional programming, logic programming, definitional programming (more 
general).

Nucleoid is an open source (Apache 2.0), a runtime environment that allows 
declarative programming written in ES6 (JavaScript) syntax. Since statements are 
declarative, the runtime provides logical integrity, plasticity and persistency as hiding 
technical details.

2



Complexity in software

• Programmer effort is proportional to 
complexityn where n > 1
• Halstead metrics

• Boehm, COCOMO

• Boehm predicted that software costs 
would overwhelm hardware costs.
• 1973, “Ada - The Project : The DoD High 

Order Language Working Group”

• Moore’s switch
• Steven Pemberton (2019)

• Compared to the cost of a programmer, a 
computer is almost free.

Relative costs of computers and programmers, 1957-now
(from Steven Pemberton: Declarative vs. Procedural)

In an important 1973 report entitled "Ada - The Project : The DoD High Order 
Language Working Group" to the Defense Advanced Research Projects Agency 
(DARPA),[7] Boehm predicted that software costs would overwhelm hardware costs. 
DARPA had expected him to predict that hardware would remain the biggest 
problem, encouraging them to invest in even larger computers. The report inspired a 
change of direction in computing. 

3



Essential vs. Accidental Complexity

• Frederick P. Brooks, No Silver Bullet (1986)
• “we cannot expect ever to see two-fold gains every two years” in 

software development, as there is in hardware development

• Essential complexity:
• caused by the characteristics of the problem to be solved 

and cannot be reduced.

• Accidental complexity: 
• problems which engineers create and can fix

• difficulties due to the chosen software engineering tools

• difficulties arising from the technical solution

• lack of using the domain to frame the form of the solution 

Fred Brooks, author of “The Mythical Man-Month” also observed that software costs 
were overwhelming hardware costs.
Software development is hard, because of its complexity. But there are two kinds of 
complexity: Essential an Accidental.

4



Reducing complexity

• Essential complexity cannot be reduced

• Reduce accidental complexity, which tends to grow over time

• Fools ignore complexity.
Pragmatists suffer it.
Some can avoid it.
Geniuses remove it.
- Epigrams on Programming, Alan Perlis,

first recipient of the Turing Award

• Declarative techniques
reduce accidental complexity
by specifying what, not how

Grewe, Axel et. al. (2017). Automotive Software Product Line Architecture
Evolution: Extracting, Designing and Managing Architectural Concepts. 

Why is it so difficult to reduce complexity? Why are declarative techniques not used
everywhere?

5



Engineers like complexity

• It gives a sense of doing something

• Everyone thinks that they are very clever

• They see themselves as software engineers, not 
domain experts

• Why has elegance found so little
following? That is the reality of it.
Elegance has the disadvantage,
if that's what it is, that hard work is needed to 
achieve it and a good education to appreciate it.

- Edsger W. Dijkstra

The most difficult is to understand the essential complexity thoroughly.
Understanding and creating accidental complexity is easy.

One source of accidental complexity is lack of using the domain to frame the form of 
the solution.

Picture source: http://antipatterns.com/briefing/sld015.htm

6



The manager’s way to reduce effort

• Making software has been, and will always be difficult

• I have no way to do anything about that

• Better make the software generic, so we have to make it only once
(and the rest is just configuration)

Managers ask more often to make everything generic. The idea is that something 
generic “only needs to be configured”.
Sometimes I suggest that the most generic software is a C compiler, and that the C 
stands for ‘configuration’.

7



Success factors of declarative techniques

• Reducing accidental complexity

• More Edsger Dijkstra quotes:

• Simplicity is prerequisite for reliability.

• About the use of language: it is impossible to sharpen a pencil with a blunt 

axe. It is equally vain to try to do it with ten blunt axes instead.

• The competent programmer is fully aware of the limited size of his own skull. 

He therefore approaches his task with full humility, and avoids clever tricks like 

the plague.

8



Regular Expressions

• Invented by Stephen Cole Kleene in 1951

• Describe what a neural net (in 1951) or a state 
machine does, not how
• Omit start, end, and other state labels

• https://youtu.be/528Jc3q86F8

ab*c

This Computerphile video about the history of regular expressions: 
https://youtu.be/528Jc3q86F8

9



Domain Specific Languages

• SQL
• relational algebra
• operations on the underlying data model (what, not how)

• XSLT
• pattern matching on the input to drive computation
• operations on the underlying data model (what, not how)

• Xforms
• interactive view on data model
• operations on the underlying data model (what, not how)

• LINQ, GraphViz, Vega

• DSLs do not by definition reduce complexity, effort, cost

Declarative languages are often domain specific – operate on a specific data model.
Not all DSLs are declarative!
This slide lists some DSLs that I think are successful declarative programming 
languages.

https://vega.github.io/vega/ - Vega – A Visualization Grammar

Making a DSL is easy, making a useful one is not.

10



Pitfalls of declarative techniques

• Genericity
• Not being specific, widely applicable (configurable)

• Complex technical meta-model

• When configuration becomes Turing complete…

• Reification
• Making an abstract concept into an explicit data object

• Objects that only represent something else

• Data Transfer Object (DTO); represents data storage, not a domain entity
(but DTOs were better than entity beans in EJB < 3.0)

Both genericity and reification can be useful. They can also be dangerous.

EJB is a prime example of accidental complexity. Many ‘frameworks’ start out useful 
and grow into bloated swiss army knives.
https://playingintheworldgame.com/2013/10/28/the-ultimate-swiss-army-knife-
1880-version/

11



Aside: Enterprise software

• Conway’s Law: “Any organization that designs a system will produce a 
design whose structure is a copy of the organization’s communication 
structure.”

Does My Bus Look Big in This? Jim Webber & Martin Fowler

Enterprise software is difficult. Consultants make it seem easy by using lots of 
buzzwords that would solve the difficult parts.
Does your software have exponential blockchain user experience ; IoT SAAS SPA API ; 
agile cloud computing algorithm mashup ; full-stack mobile-first responsive design ; 
disruptive serverless microservice toolchain ; crypto ecosystem vapourware ; 
actionable holistic business-IT alignment convergence ; multichannel devops
microblogging web 2.0 engine framework.

Instead of focusing on understanding essential complexity, the essential complexity is 
hidden under a layer of accidental complexity.
An ESB looks on the outside like “everything is easy”.

12



Publishing from multiple content sources

• Every content source has its own DTD (~ 2005).

Why do we have so many 
DTD’s. That’s a complete 
waste. Can’t you make it 
generic?

The content sources we 
import have different 
structures, which we need 
to validate.

Make one 
DTD for 
everything. 
How hard 
can that be?

Eh…
Well…

Okay then…

Around 2005, I worked for a company that had many content sources.
At the time, there was this hype about integrating many content sources in a flexible 
(generic) way, and publishing to many channels (paper, CD-ROM, Web, …)

13



Making a generic <XYZ>

Make XYZ generic, so 
we have to develop it 

only once!

If I make XYZ an 
instance of XYZ itself, 
I can modify it easily.

Note on the following slides:

Code samples, identifiers, and programmer or company names are 
either the products of the author’s imagination or used in a fictitious 
manner. Any resemblance to actual software developers, living or 
dead, or actual program code is purely coincidental.

14



Reification: the “Thing DTD”
• A “thing” is something with “things”.
<!DOCTYPE element [

<!ELEMENT element ( attribute* , content? )>
<!ATTLIST element name CDATA #REQUIRED>
<!ELEMENT attribute EMPTY>
<!ATTLIST attribute name CDATA #REQUIRED>
<!ATTLIST attribute value CDATA #REQUIRED>
<!ELEMENT content (#PCDATA | element)* >

]>

<element name=“page">
<attribute name="type" value=“slide"/>
<content>

<element name="title"><content>The “thing” DTD</content></element>
The most generic DTD is also the most useless.

</content>
</element>

No more 
validation errors!

Easy to translate 
from and into any 
original format!

One size fits all →
most generic!

Any XML document, regardless of the DTD or schema, can be converted to an XML 
document using the “Thing DTD”, and back.
What’s not to like?

This is Genericity by Reification: Describe X in X. Call it a meta-model.

15



Generic databases
• Database schemes are hard to change

because only the DBA is authorized to do that

• Make the database within the database
(in 2020 speak: Software Defined Database)

• Bonus: Also store code in the DB and 
bypass the cumbersome deployment process

table relationn mfield n m

Only one 
database schema 

for all storage!

I have seen databases used in this way more than once.

16



RDF: how to make statements about statements

:Amsterdam :capital_of :Netherlands

_:x rdf:type rdf:Statement .

_:x rdf:subject :Amsterdam .

_:x rdf:predicate :capital_of .

_:x rdf:object : Netherlands .

_:x :said :DBPedia .

Hard to query 
with SPARQL.

Inference 
becomes very 

difficult

Everything 
becomes 
inefficient

(says DBPedia)

Reification is often used in linked data, usually because of perceived limitations of 
RDF and other representations.

17



Doing Scrum with the wrong tool (TFS)

X

The tools that software developers use also provide opportunities to make them 
more generic using reification.

TFS does not support the usual scrum board columns “review” and “test”,
and “resolved” can only be used for bugs, not stories.
To be fair, TFS allows for some customizations, but I never met a TFS admin who knew 
(how to do) that.

So we split up the phases of a story, and have tasks for ‘active’, ‘review’, ‘test’, ‘close’. 
These become activities, not states.

This can create inconsistencies, as in the second example. It also splits the history of a 
user story across tasks.

18



Reification with XSLT
<xsl:template match="dcterms.creator">

<creator-id function=“lookup-organisation">

<param name="organisation">

<xsl:value-of select="." />

</param>

</creator-id>

</xsl:template>

<xsl:template match="/*[@function]">

<xsl:choose>

<xsl:when test="@function = 'lookup-organisation'">

<xsl:variable name=“org“
select="param[@name = 'organisatie']" 

as="xs:string"/>

<xsl:variable name="org-id“ select=“… $org …" 
as="xs:string"/>

</xsl:when>

…

This makes a function call into an XML element in the ‘analysis phase’, in order to 
execute the function in a later ‘enhancement phase’.
This was supposed to lead to “separation of concerns”.
Just calling a function in XSLT is not very interesting for software developers. Anyone 
can do that.

19



Conclusion

• Genericity may seem to reduce effort

• Reification may seem to provide flexibility

• Often they lead to more accidental complexity

• Declarative techniques can provide reduced effort and flexibility
by removing accidental complexity

• Specify what, not how,
but first ask “why?”

Picture source: https://xkcd.com/974/

20


