
1

Presenter
Presentation Notes
Automated text processing has many applications. Most algorithms work on plain text. But XML documents contain structure.

Introduction

2

Presenter
Presentation Notes
The problem that I address occurs when XML documents are used for natural language processing tasks that add markup. The main example is phrase recognition, but other applications like sentiment analysis or topic extraction could benefit as well.
The work described here was done in the context of the Link eXtractor. The LX is an application that detects and resolves references to legislation, case law and other governmental and legal documents. It was developed for the Expert Center for Official Governmental Publications (KOOP) in the Netherlands. I wish to thank Marc van Opijnen for providing the opportunity to work on this.

Link eXtractor (Dutch center for governmental publications, KOOP)

• Find case law citations and other references,
and add markup with links.

• […] the for the judgment of the
.

• […] the <link ref="ECLI:EU:C:1997:11">opinion of the Advocate
General</link> for the <link ref="ECLI:EU:C:1997:208">judgment of
the European Court of Justice of 22 April 1997 (case C-180/95)</link>.

3

Presenter
Presentation Notes
The LX is an application that detects and resolves references to legislation, case law and other governmental and legal documents. These references occur as pieces of text in the document content, with a loosely defined structure. The LX recognizes these text fragments, marks them (usually with an XML element) and provides a link to the referred document if possible.

Named Entity Recognition

• Efficient recognition of text fragments (“named entities”)
• Titles and abbreviations of laws (~ 250k)
• ECHR applicants and cases (~ 100k)
• Case law aliases (~ 3k)

• Uses a trie to match text efficiently

• Scans plain text (no XML)
and marks named entities (XML)

4

Presenter
Presentation Notes
The LX uses two main recognition techniques. One is NER. NE’s are fixed pieces of text, with some normalization for character case, accents, different Unicode characters for dashes, etcetera.

Parsing Expression Grammars

• PEG is like regular expressions, with named sub-expressions
• PEG is like context-free grammars, efficiently solving ambiguities

without back-tracking

• Parsing plain text (no XML)
results in a parse tree (XML)

5

Presenter
Presentation Notes
The second recognition technique is PEGs.
Apart from NER and PEG, we use operations for disambiguation, reference construction and link resolution. This is mostly done in XSLT, some Java.

Adding structure to a structured document
• expressed by the Supreme Court in its judgment of 16 February 2010, published

in NS 2010, 98, also in NJ 2010, 232 with annotation of M.J. Borgers, and RvdW
2007, 420 (case R06/090)

• Preserve structure of the input (XML) document, or a partially
processed document

• expressed by the <lx:INSTANTIE norm="HR">Supreme
Court</lx:INSTANTIE> in its judgment of <date iso-8601-date="2010-02-
16">16 February 2010</date>, published in NS 2010, 98, also in NJ 2010, 232
with annotation of M.J. Borgers, and RvdW 2007, 420 (case R06/090)

<link ecli="ECLI:NL:HR:2010:BK6357">

6

Presenter
Presentation Notes
What can happen when adding markup?
Consider just the text of the document, and the parts that form the link.

If markup is present in the input document, or added during processing, it may lead to a non-well-formed document.

Implementing the LX

• A Java / C# / … program?

• One or more XSLTs?
• NER & PEG parsing with extension functions
• How to get just the text for parsing, and keep the structure

• A mix of 70 XSLT and Java components in a pipeline!
• NER and PEG parser must recognize (or ignore) embedded XML structure
• Still a lot of accidental complexity

7

Presenter
Presentation Notes
HOW does the LX do its job?
Java or C# gets very complex, because it is not declarative!

Example of accidental complexity
<lx:regeling name="BWBV0001506">EG</lx:regeling> is a treaty, but
also part of the reference HvJ
<lx:regeling name="BWBV0001506">EG</lx:regeling> 18 juli 2007, C-
231/05

regeling
<- … lx_regeling_start

*(![<] .) … … …
lx_regeling_end …

lx_regeling_start <- '<lx:regeling' *(![>] .) '>’

lx_regeling_end <- '</lx:regeling>'

PEG parser

serialize

<lx:Regeling start="0" end="93">
<lx:Lx_regeling_start start="0" end="77">

<lx:regeling xmlns:lx="http://linkeddata.overheid.nl/lx/" name="BWBV0001506">
</lx:Lx_regeling_start>
EG […]

normalize

NER

8

Presenter
Presentation Notes
Regeling = regulation, like a law or treaty.
We have to build a small XML parser. There is “grammar pollution” for the domain expert.

SMAX: Separated Markup API for XML

9

Presenter
Presentation Notes
SMAX (Separated Markup API for XML) was designed in order to be able to process the text content of an XML document in a linear way, without intervening markup. At the same time, SMAX retains and can modify the structure and markup of the document.

SMAX representation of XML

0 .. 26

2 .. 12 13 .. 26

A B C D E GF H I J K L PONM UTSRQ V ZW X Y

2 .. 6 6 .. 12 14..18 21..24

markup
(structure)

content

position 0 1 2 3 4 5 6 7 8 26...

10

Presenter
Presentation Notes
SMAX treats the markup (element tree structure) and text of an XML document separately.
Each element records its ‘span’ in the text content as a start position and an end position.

SMAX element insertion

A B C D E GF H I J K L PONM UTSRQ V ZW X Y

?
insertMarkup(SmaxNode)

11

Presenter
Presentation Notes
SMAX has several strategies to handle unbalanced (non-well-formed) insertions.

Balancing strategies

• Element insertion and other operations must maintain
well-formedness of the markup tree

• Balancing strategies
• OUTER
• INNER
• START
• END
• BALANCE_TO_START
• BALANCE_TO_END

Only for unbalanced insertions

Only for unbalanced insertions

12

p
M

q

Well-formed (balanced) insertion
OUTER, INNER,

BALANCE_TO_START,
BALANCE_TO_END START END

M
p qr

p M q

M p qr

p M q

p qr

p M q

M

p
M

p M p M p M

insert recursively insert recursively insert recursively

p qr
M

13

Presenter
Presentation Notes
First we look at how the tree structure changes during insertion.
The easiest case is an insertion of <M> with start and end positions that lead to a balanced tree and no balancing is needed.

OUTER, INNER ENDSTART

<p>..!!!..</p>

<p>..</p>..!!!..<q>..</q>

..!<p>!</p><q>!</q>!..

<p>..<M>!!!</M>..</p>

<p>..</p>..<M>!!!</M>..<q>..</q>

..<M>!<p>!</p><q>!</q>!</M>..

<p>..<M/>!!!..</p>

<p>..</p>..<M/>!!!..<q>..</q>

..<M/>!<p>!</p><q>!</q>!..

<p>..!!!<M/>..</p>

<p>..</p>..!!!<M/>..<q>..</q>

..!<p>!</p><q>!</q>!<M/>..

Well-formed insertions

16

Presenter
Presentation Notes
What does this look like in XML?
Suppose we have a recognizer for ‘!’+ (one or more exclamation marks).

OUTER START, BALANCE_TO_STARTINNER

<p>.!</p>!<q>!.</q>

<p>.</p>!!<q>!.</q>

<p>.!</p>!!<q>.</q>

<M><p>.!</p>!<q>!.</q></M>

<p>.</p><M>!!<q>!.</q></M>

<M><p>.!</p>!!</M><q>.</q>

<p>.!</p><M>!</M><q>!.</q>

<p>.</p><M>!!</M><q>!.</q>

<p>.!</p><M>!!</M><q>.</q>

<p>.<M/>!</p>!<q>!.</q>

<p>.</p><M/>!!<q>!.</q>

<p>.<M/>!</p>!!<q>.</q>

Non-well-formed insertions

17

SPEAT: Simple Pipelines of Event API Transformers

18

Presenter
Presentation Notes
How can one use SMAX transforming components?

XML document processing is often done using pipelines, facilitated by technologies like XProc and Apache Cocoon.
SPEAT is a Java library for building pipelines from event APIs like SAX and SMAX.
Each step in a SPEAT pipeline is a transformer from one event API type to another.

Pipelines of event API transformers

Sax
Parser

Sax To
Smax

Smax
Transformer+

Smax
To Sax Serializer

SAX SMAX SMAX SAXserialized XML serialized XML…

startDocument()
startElement(uri, lname, qname,attrs)
…
endElement(uri, lname, qname)
endDocument()

process(SmaxDocument document)

19

Event API transformers
Pipeline<S, T> extends

EventHandler<S>,
EventSupplier<T>

EventHandler<T>EventSupplier<S>

event (method call)

(return)

20

Presenter
Presentation Notes
What is a Pipeline<S, T>?
EventHandler and EventSupplier are needed because Java does not support contravariance on type parameters.

Method calls are an efficient way to represent events.

Pipeline

NamedEntity
RecognizerSacToSmaxAdapterSaxReader SmaxToSaxAdapter

…

…

21

https://github.com/nverwer/SPEAT

• Code is available as open source
• Some pipeline components are available
• Adapter for Apache Cocoon has been made
• Adapter for an Xproc 3 implementation would be great
• Not a framework, but a library

22

	Plain text processing in structured documents
	Introduction
	Link eXtractor (Dutch center for governmental publications, KOOP)
	Named Entity Recognition
	Parsing Expression Grammars
	Adding structure to a structured document
	Implementing the LX
	Example of accidental complexity
	SMAX: Separated Markup API for XML
	SMAX representation of XML
	SMAX element insertion
	Balancing strategies
	Well-formed (balanced) insertion
	Well-formed insertions
	Non-well-formed insertions
	SPEAT: Simple Pipelines of Event API Transformers
	Pipelines of event API transformers
	Event API transformers
	Pipeline
	https://github.com/nverwer/SPEAT

