
An introduction to Greenfox

A schema language describing
file system contents -

hands-on & brainfriendly

Hans-Jürgen Rennau, parsQube GmbH
Presented at Declarative Amsterdam 2020, October 8, 2020

Presenter
Presentation Notes
This is an introduction to greenfox, a schema language for validating file systems.

File system tree validation

2020-10-08 Greenfox 2

File system tree =
a selected folder

+ all folders/files directly or indirectly contained

Validation =
check conformance to a set of constraints („schema“)

Validation result =
the outcome of one check:
single resource checked against a single constraint

Validation report =
collected validation results,
mapped to something palatable

Why might you care?

 What we are used to:
declarative validation of single files against schemas
(XSD, RelaxNG, JSON Schema, CSV Schema, SHACL, …)

 Real interest: validity of systems, not individual files
 Single file: a tiny jigsaw piece in the picture of system validity
 File system trees are simply larger parts of the picture

Examples:
 A product to be shipped
 A set of applications in use
 Critical components of infrastructure
 Data sources and assets
 Complex test results

2020-10-08 Greenfox 3

SAMPLE WORRIES

No file forgotten?
File versions correct?

Log files removed?
Documentation complete?
All translations included?
All links updated? Etc. etc.

Outline

 Getting started - hands-on impressions
 Big Picture - concepts
 Overview - available constraint types

2020-10-08 Greenfox 4

Part 1: Getting started …

2020-10-08 Greenfox 5

A guided tour:

„A trivial file system tree
Validated against a

non-trivial schema
Developed in seven steps

Source of all airport data: https://openflights.org/data.html

2020-10-08 Greenfox 6

(having made up his mind to participate
In the Greenfox tutorial at Decl. Amst. 2020)

(Jodle will join us, coming straight from the pencil of Cédric Philippe)

http://cedricphilippe.com/section_me.html

Part 2: Big picture

2020-10-08 Greenfox 7

The key to understanding Greenfox is knowing

SEVEN CONCEPTS

SEVEN CONCEPTS

 Resources
 Constraints
 Shapes
 Target declarations
 Link definitions
 Results
 Reports

2020-10-08 Greenfox 8

1. Resources

 Resources = files & folders

2020-10-08 Greenfox 9

Now that was easy!

2. Constraints

 A constraint is a function:

 Selection of the resource is not part of the constraint –
that‘s the business of the containing shape

 Schema representation: XML element + attributes + children

10

Maps a resource to a validation result
= (1) pass|failure (2) details

2. Constraints - type + facet

 Type, parameters, facet
 The type is identified by the XML element name
 The parameters are provided by attributes / child elements
 The facet depends on a key parameter

 Example: Constraint #1
 Type: Value
 Parameters: exprXP, minCount, minCountMsg
 Key parameter: minCount
 Facet: ValueMinCount

2. Constraints - example

 Example: Constraint #2
 Type: Value
 Parameters: exprXP, distinct, distinctMsg
 Key parameter: distinct
 Facet: ValueDistinct

2020-10-08 Greenfox 12

2. Constraints - categorization

 Categorization:
 Unary - targets single resource

e.g. <value>, <valuePair>, <docTree>
 Binary - targets a pair of resources

e.g. <valueCompared>, <docSimilar>, <folderSimilar>

 Categorization:
 Closed - excludes impact from other resources

e.g. <value>, <valueCompared>
 Open - allows impact from other resources

e.g. <foxvalue>, <foxvaluePair>, <links>

2020-10-08 Greenfox 13

2. Constraints - constraint types

3. Shapes

 Shape is two things:
 Set of constraints
 Target declaration

 Target declaration:
„The constraints apply to these resources: (a selector)“

 Schema representation of a shape: <file>, <folder>
 Element name: the kind of resources
 Attributes: target declaration
 Child elements: constraints

15

4. Target declaration

 A target declaration is a function:

 Schema representation: attributes of <file> or <folder>

Maps a resource to a set of resources

* Input resource =
a resource from the target of the parent shape

* Output resources =
contribution to the target of this shape

16

5. Link definition

 A Link Definition is a function:

 Schema representation:
 Either: <linkDef> element
 Or: Attributes and child elements of a „link using element“

 Link using elements:
 Shapes <file>, <folder>
 Links constraint <links>
 Binary constraints <valueCompared>, <docSimilar>, <folderSimilar> …
 Hyperdoc constraint <hyperdocTree>

Maps a resource to a set of resources

17

5. Link definition - connectors

Connector: foxpath

Connector: href-expression

Connector: URI-expression

18

5. Link definition - more connectors

Connector: mirror

Connector: URI-template

19

2020-10-08 Greenfox 20

5. Link definition
- used by target declarations

Link Definition referenced (@linkName)

Link Definition local (@navigateFOX, @hrefXP, @uriXP, …)

5. Link definition
- used by binary constraints

ValueCompared

DocSimilar

2020-10-08 Greenfox 21

5. Link definition - constraints

Links resolvable and yield at least one link target resource

Exactly one link target resource

22

Intermezzo (interfoxo)

Note the the amazing fox – look at …

$greenfox/declarative-amsterdam-2020/the-amazing-fox/the-amazing-fox.txt
$greenfox/declarative-amsterdam-2020/tutorial-foxpath/tutorial-foxpath.txt

For example, node tree and file system navigation can be freely mixed, e.g.

fox "ancestor~::decl*//*.gfox.xml[*:docSimilar]"

selects files based on their structured XML content. Or

fox "ancestor~::decl*//airport-*.json/jdoc(.)[\\iata eq 'WAT']"

selects files based on their structured JSON content.

NOTE: In Greenfox, the roles of / and \ are reversed. If you use fox with option –b, it behaves like Greenfox.

6. Results

 Validation result =
Outcome of checking a single resource against a single constraint
 XML element <red>, <green>
 Attributes and child elements …

 Identify the resource
 Identify the constraint type and facet
 Constraint location in the schema
 Constraint parameters
 Observations

2020-10-08 Greenfox 24

6. Result - example

2020-10-08 Greenfox 25

7. Report - example

2020-10-08 Greenfox 26

Part 3: Constraint types

2020-10-08 Greenfox 27

Now you are ready to familiarize yourself with

CONSTRAINT TYPES

Constraint types

Important, but only mentioned

 <focusNode> - changing evaluation context
 Variable bindings in XPath and Foxpath (e.g. $fileName)
 Dealing with archives
 JSON, CSV, HTML, .txt (see also demo-mediatype)
 Schema context & schema parameters

2020-10-08 Greenfox 29

Thank you, Jodle and all others,
for your kind attention!

2020-10-08 Greenfox 30

(Jodle returning to Prague, straight to the pencil of Cédric Philippe)

http://cedricphilippe.com/section_me.html

	An introduction to Greenfox
	File system tree validation
	Why might you care?
	Outline
	Part 1: Getting started …
	Slide Number 6
	Part 2: Big picture
	SEVEN CONCEPTS
	1. Resources
	2. Constraints
	2. Constraints - type + facet
	2. Constraints - example
	2. Constraints - categorization
	2. Constraints - constraint types
	3. Shapes
	4. Target declaration
	5. Link definition
	5. Link definition - connectors
	5. Link definition - more connectors
	5. Link definition � - used by target declarations
	5. Link definition � - used by binary constraints
	5. Link definition - constraints
	Intermezzo (interfoxo)
	6. Results
	6. Result - example
	7. Report - example
	Part 3: Constraint types
	Constraint types
	Important, but only mentioned
	Thank you, Jodle and all others,�for your kind attention!

