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Logistics
● Slides are available in various formats and typefaces 

at
– https://www.delightfulcomputing.com/talks/
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Overview
● Not an introduction to parser theory;

● Ad-hoc parsing rather than strictly grammar based;

● Emphasis: features new in XSLT 3 that facilitate 
writing ad-hoc text parsers;

● Examples mostly come from working on  Eddie 2.
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Eddie 2 & Parsing
● Eddie 2 needs to read two DTDs and compare  them 

in specific ways;

● It can also read your XSLT stylesheet to guess 
whether you have written all the templates you need;

● It also reads a config file (simple XML though).
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Eddie 2 Report
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Production DTD Example
<!ELEMENT app 

    (title, index*, (%para.level;|fn)*, intro?, sect*) 

>

● When writing XSLT, only the resulting list of elements usually 
matters, but the parameter entities can help understand the 
DTD.

● The DTD is a text file, so we might first think of …
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Regex approach to ad-hoc parsing
● Use substitutions to turn input into something regular and then 

handle that instead

● replace(

"<!ELEMENT\s+(\i\c*)\s+(.*?)\s*>",
"<e><n>$1</n><model>$2</model></e>”

)
● But how far should you go?
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Avoid the Sledgehammer
● Any sufficiently powerful regular expression is 

indistinguishable from line noise.

● Use whitespace to format expressions (“x” flag);

● You can use intermediate variables;

● Beware that {…} marks an attribute value template in 
xsl:analyze-string.  Use a variable.
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Don’t do this

# first the case with parens, LAST (FIRST) and variations,                                    (?:\s+[A-ZÆŒÉ]+,?)*

# all with the parens:                                                                        (?:

^                                                                                                 (?:

( # 1                                                                                                 \s+or |

    (?:ST\.\s+)?                                                                                      \s+or\s+simply |

    [A-ZÆÉŒ][A-ZÆÉŒ-]*[A-ZÆŒÉ]'?             # at least 2 letters at the start                        \s+or\s+[dD]e |

    (?: # a multi-word cluster is allowed here:                                                       \s+ in \s+ [lL]atin |

        \s+                                                                                           \s+or,\s+as\s+pronounced,

        (?: # optional St. or roman numeral or word                                               )

            [XVI]+\.? |                                                                           (?:\s+[A-ZÆŒÉ]+,?)+

            ST\. |                                                                                ,?

            Y | # for a Spanish name, Alcala Y Henares                                        )*

            du |                                                                          )?

            (?:                                                                        \s+

                [LD]'\s*                                                              )

            )?                                                                        [(](.*?)[)] # 3 - require the parens

                                                                                      ( # 4 - sep

            [A-ZÆŒ]+-?[A-ZÆŒ]+                                                            ,?

        )                                                                                 [.,]|

        '? # E' is usually (not always) used for É in the book                            \s+a|\s+an|\s+one|\s+was|\s+the|\s+were|\s+lived|\s+of|\s+called|

    )*                                                                                    [.,]?\s+[sS]ee|\s+is|\s+son|

)                                                                                         \s+surnamed|

( # 2                                                                                     \s+D[AEU]\s[A-ZÆ]+,? # for vol 4 p. 110ff, and elsewhere

    (?: # optional ,alternate, alternate, or alternate,                               )

        ,?                                                                            ( # 5 - rest

                                                                                         \s+

                                                                                         .*

                                                                                      )

                                                                                      # [a-z][a-z] # require at least 2 lower case letters to avoid running header
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Instead
● Make a little language and compile it into a regular 

expression, or use multiple smaller patterns;

● Match a little at a time; use maps to represent state;

● Use fn:tokenize() and match on sequences;

● Note: for HTML class attributes use contains-token() 
instead, to get case sensitivity & corner cases right.
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The actual Eddie 2 DTD parser...
● Uses an array of maps to hold a state table;

● Each map has a string or regex to match the next token, a name 
for error reporting, and a function to handle the rest of the 
construct.

● Each construct (<!ELEMENT, <!ATTRIBUTE etc.) has its own 
syntax and its own function;

● The functions can safely use regexes.
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Simple Grammars
● Sometimes you have a really simple grammar to 

match & simple replace() is readable, with 
intermediate variables;

● Eddie 2 can read your XSLT file and make sure you 
have a template for every changed element; the 
code parses XSLT match patterns to do this.
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Match Patterns in XSLT 3
● An XSLT 3 match pattern is either a predicate pattern or a match pattern.

● A predicate pattern .[ test ] matches if the test is true, and can match 
anything.

– For Eddie 2, use match="sock", not match=" . [name() eq 'sock'] "

● A selection pattern uses a subset of XPath 3
– These are the regular XSLT match= templates we want to Eddie 2 to check for us.

– The grammar for them is simple; let’s take a quick look at a fragment of it:
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Selection patterns
UnionExprP ::= IntersectExceptExprP (("union" | "|")   IntersectExceptExprP)* 

IntersectExceptExprP ::= PathExprP (("intersect" | "except") PathExprP)*

PathExprP ::= RootedPath | ("/" RelativePathExprP?) | ("//" RelativePathExprP) | 
RelativePathExprP

RootedPath ::= (VarRefXP30 | FunctionCallP) PredicateListXP30 (("/" | "//") 
RelativePathExprP)?

RelativePathExprP ::= StepExprP (("/" | "//") StepExprP)*

StepExpr ::= PostfixExprP | AxisStepP
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Matching selection patterns
<!--* Remove XPath comments first, (: …. :) turning them into a space *-->

<xsl:variable name="without-comments" as="xs:string"

      select="replace($input, '[(][:].*?[:][)]', ' ')" />

<!--* Remove strings, so we can safely remove predicates later

    * without worrying about strings containing [ or ]

    *-->

<xsl:variable name="noquot_re" select=" '&quot;[^&quot;]*&quot;' " as="xs:string" />

<xsl:variable name="without-single-quote-strings" as="xs:string"

     select='replace($without-comments, $noquot_re, " ")' />
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Commentary
● You could do this part in XSLT 2 just as well;

● Intermediate variables help me to understand what i did;

● The variables can also be printed with 
<xsl:message>$var={$var}</xsl:message> (XSLT 3)

or examined in a debugger (e.g. Oxygen XML 
Developer™)
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Returning a result
● The “parse” returns the original match attribute or an empty 

sequence, and a sequence of zero or more element names;

● An array is a good choice here, so i could add more information 
later, such as a mode attribute: [ $attr, $elements, $mode …]

● Could also use a map and give the items names.

● Note: arrays and maps preserve node identity and can contain  aby 
sort of item, including function items.
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Arrays & Maps vs Elements
● Arrays & Maps use less memory than elements

● Can preserve node identity and values inside them

● Fragile: poor type safety as="map(*)"
● Fussy: it’s an error if you forget to type a variable or 

parameter or if you don’t specify the return type of a 
function or template (could use schematron to mitigate this?)
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Table Driven Parsing
● Maps can nest:

input-token: “<!ELEMENT”,

parse-table : {
input-token: $XMLNAME,

parse-table: {
input-token: “#PCDATA”
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Table Driven Parsing
● Maps can contain functions:

input-token: “<!--”,

handler: handle-comment#3
● Could also put the function inline,

handler: function ($input as xs:string …) { … }

but it’s easier to debug if it has a name.
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A Tail of Two Recursions
● Recursive templates & functions can use a lot of 

memory unless the interpreter spots tail recursion and 
turns them loopy.

● The xsl:iterate instruction explicitly enforces tail 
recursion amenable code so it’s strictly loopy.

● Parsing can make deep recursion.
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Finite State Machines
● E.g. a separate set of tables to handle different sections 

in a book, with an input rule to move between them;

● This starts to get closer to a traditional parser, more 
computer-sciency;

● Remember who will read the stylesheet!
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Use map:for-each()
● To map each key/value pair to a new value (possibly 

a map entry) use the map:for-each() function; or use 
keys() ! Function() {…}

● The XSLT 1 way would have been a recursive 
template; in XSLT 2, a recursive function (if XSLT 
1 or 2 had maps, that is!)
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Streaming and Parsing
● Streaming stylesheets can go reasonably quickly 

and use less memory;

● New XSLT instructions like xsl:where-populated are 
useful even outside streaming: a much more 
efficient way to make container elements only if 
they contain something (e.g. a list).
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Higher Order Functions
● You can make a “visitor pattern” from functions, can have 

templates and functions that return functions, and can use 
functions as another way alongside fn:transform() to avoid 
modes;

● Passing a function as an argument to a function can be a 
good, clear way to encapsulate context (e.g. a getToken() 
function).



  
Slide 26

Skimming the Surface
● We’ve looked at new data types (maps,  arrays),  new operators, higher order functions 

(functions as values), streaming, templates that return functions, arrays, maps…

● XSLT 3 brings big and deep changes…

● You always need to keep in mind the rhetorical nature of what you write, and the 
expected audience;

● Ad-hoc parsing of text is often very appropriate, and XSLT 3 has lots of tools to help 
you.

● Oh, and Eddie 2? He’s doing fine. Thanks for asking.
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</talk>

Liam Quin
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https://www.delightfulcomputing.com
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