

Slide 1

Parsing Text With XSLT 3

Liam Quin
Delightful Computing

https://www.delightfulcomputing.com/

Slide 2

Logistics
● Slides are available in various formats and typefaces

at
– https://www.delightfulcomputing.com/talks/

Slide 3

Overview
● Not an introduction to parser theory;

● Ad-hoc parsing rather than strictly grammar based;

● Emphasis: features new in XSLT 3 that facilitate
writing ad-hoc text parsers;

● Examples mostly come from working on Eddie 2.

Slide 4

Eddie 2 & Parsing
● Eddie 2 needs to read two DTDs and compare them

in specific ways;

● It can also read your XSLT stylesheet to guess
whether you have written all the templates you need;

● It also reads a config file (simple XML though).

Slide 5

Eddie 2 Report

Slide 6

Production DTD Example
<!ELEMENT app

 (title, index*, (%para.level;|fn)*, intro?, sect*)

>

● When writing XSLT, only the resulting list of elements usually
matters, but the parameter entities can help understand the
DTD.

● The DTD is a text file, so we might first think of …

Slide 7

Regex approach to ad-hoc parsing
● Use substitutions to turn input into something regular and then

handle that instead

● replace(

"<!ELEMENT\s+(\i\c*)\s+(.*?)\s*>",
"<e><n>$1</n><model>$2</model></e>”

)
● But how far should you go?

Slide 8

Avoid the Sledgehammer
● Any sufficiently powerful regular expression is

indistinguishable from line noise.

● Use whitespace to format expressions (“x” flag);

● You can use intermediate variables;

● Beware that {…} marks an attribute value template in
xsl:analyze-string. Use a variable.

Slide 9

Don’t do this

first the case with parens, LAST (FIRST) and variations, (?:\s+[A-ZÆŒÉ]+,?)*

all with the parens: (?:

^ (?:

(# 1 \s+or |

 (?:ST\.\s+)? \s+or\s+simply |

 [A-ZÆÉŒ][A-ZÆÉŒ-]*[A-ZÆŒÉ]'? # at least 2 letters at the start \s+or\s+[dD]e |

 (?: # a multi-word cluster is allowed here: \s+ in \s+ [lL]atin |

 \s+ \s+or,\s+as\s+pronounced,

 (?: # optional St. or roman numeral or word)

 [XVI]+\.? | (?:\s+[A-ZÆŒÉ]+,?)+

 ST\. | ,?

 Y | # for a Spanish name, Alcala Y Henares)*

 du |)?

 (?: \s+

 [LD]'\s*)

)? [(](.*?)[)] # 3 - require the parens

 (# 4 - sep

 [A-ZÆŒ]+-?[A-ZÆŒ]+ ,?

) [.,]|

 '? # E' is usually (not always) used for É in the book \s+a|\s+an|\s+one|\s+was|\s+the|\s+were|\s+lived|\s+of|\s+called|

)* [.,]?\s+[sS]ee|\s+is|\s+son|

) \s+surnamed|

(# 2 \s+D[AEU]\s[A-ZÆ]+,? # for vol 4 p. 110ff, and elsewhere

 (?: # optional ,alternate, alternate, or alternate,)

 ,? (# 5 - rest

 \s+

 .*

)

 # [a-z][a-z] # require at least 2 lower case letters to avoid running header

Slide 10

Instead
● Make a little language and compile it into a regular

expression, or use multiple smaller patterns;

● Match a little at a time; use maps to represent state;

● Use fn:tokenize() and match on sequences;

● Note: for HTML class attributes use contains-token()
instead, to get case sensitivity & corner cases right.

Slide 11

The actual Eddie 2 DTD parser...
● Uses an array of maps to hold a state table;

● Each map has a string or regex to match the next token, a name
for error reporting, and a function to handle the rest of the
construct.

● Each construct (<!ELEMENT, <!ATTRIBUTE etc.) has its own
syntax and its own function;

● The functions can safely use regexes.

Slide 12

Simple Grammars
● Sometimes you have a really simple grammar to

match & simple replace() is readable, with
intermediate variables;

● Eddie 2 can read your XSLT file and make sure you
have a template for every changed element; the
code parses XSLT match patterns to do this.

Slide 13

Match Patterns in XSLT 3
● An XSLT 3 match pattern is either a predicate pattern or a match pattern.

● A predicate pattern .[test] matches if the test is true, and can match
anything.

– For Eddie 2, use match="sock", not match=" . [name() eq 'sock'] "

● A selection pattern uses a subset of XPath 3
– These are the regular XSLT match= templates we want to Eddie 2 to check for us.

– The grammar for them is simple; let’s take a quick look at a fragment of it:

Slide 14

Selection patterns
UnionExprP ::= IntersectExceptExprP (("union" | "|") IntersectExceptExprP)*

IntersectExceptExprP ::= PathExprP (("intersect" | "except") PathExprP)*

PathExprP ::= RootedPath | ("/" RelativePathExprP?) | ("//" RelativePathExprP) |
RelativePathExprP

RootedPath ::= (VarRefXP30 | FunctionCallP) PredicateListXP30 (("/" | "//")
RelativePathExprP)?

RelativePathExprP ::= StepExprP (("/" | "//") StepExprP)*

StepExpr ::= PostfixExprP | AxisStepP

Slide 15

Matching selection patterns
<!--* Remove XPath comments first, (: …. :) turning them into a space *-->

<xsl:variable name="without-comments" as="xs:string"

 select="replace($input, '[(][:].*?[:][)]', ' ')" />

<!--* Remove strings, so we can safely remove predicates later

 * without worrying about strings containing [or]

 *-->

<xsl:variable name="noquot_re" select=" '"[^"]*"' " as="xs:string" />

<xsl:variable name="without-single-quote-strings" as="xs:string"

 select='replace($without-comments, $noquot_re, " ")' />

Slide 16

Commentary
● You could do this part in XSLT 2 just as well;

● Intermediate variables help me to understand what i did;

● The variables can also be printed with
<xsl:message>$var={$var}</xsl:message> (XSLT 3)

or examined in a debugger (e.g. Oxygen XML
Developer™)

Slide 17

Returning a result
● The “parse” returns the original match attribute or an empty

sequence, and a sequence of zero or more element names;

● An array is a good choice here, so i could add more information
later, such as a mode attribute: [$attr, $elements, $mode …]

● Could also use a map and give the items names.

● Note: arrays and maps preserve node identity and can contain aby
sort of item, including function items.

Slide 18

Arrays & Maps vs Elements
● Arrays & Maps use less memory than elements

● Can preserve node identity and values inside them

● Fragile: poor type safety as="map(*)"
● Fussy: it’s an error if you forget to type a variable or

parameter or if you don’t specify the return type of a
function or template (could use schematron to mitigate this?)

Slide 19

Table Driven Parsing
● Maps can nest:

input-token: “<!ELEMENT”,

parse-table : {
input-token: $XMLNAME,

parse-table: {
input-token: “#PCDATA”

Slide 20

Table Driven Parsing
● Maps can contain functions:

input-token: “<!--”,

handler: handle-comment#3
● Could also put the function inline,

handler: function ($input as xs:string …) { … }

but it’s easier to debug if it has a name.

Slide 21

A Tail of Two Recursions
● Recursive templates & functions can use a lot of

memory unless the interpreter spots tail recursion and
turns them loopy.

● The xsl:iterate instruction explicitly enforces tail
recursion amenable code so it’s strictly loopy.

● Parsing can make deep recursion.

Slide 22

Finite State Machines
● E.g. a separate set of tables to handle different sections

in a book, with an input rule to move between them;

● This starts to get closer to a traditional parser, more
computer-sciency;

● Remember who will read the stylesheet!

Slide 23

Use map:for-each()
● To map each key/value pair to a new value (possibly

a map entry) use the map:for-each() function; or use
keys() ! Function() {…}

● The XSLT 1 way would have been a recursive
template; in XSLT 2, a recursive function (if XSLT
1 or 2 had maps, that is!)

Slide 24

Streaming and Parsing
● Streaming stylesheets can go reasonably quickly

and use less memory;

● New XSLT instructions like xsl:where-populated are
useful even outside streaming: a much more
efficient way to make container elements only if
they contain something (e.g. a list).

Slide 25

Higher Order Functions
● You can make a “visitor pattern” from functions, can have

templates and functions that return functions, and can use
functions as another way alongside fn:transform() to avoid
modes;

● Passing a function as an argument to a function can be a
good, clear way to encapsulate context (e.g. a getToken()
function).

Slide 26

Skimming the Surface
● We’ve looked at new data types (maps, arrays), new operators, higher order functions

(functions as values), streaming, templates that return functions, arrays, maps…

● XSLT 3 brings big and deep changes…

● You always need to keep in mind the rhetorical nature of what you write, and the
expected audience;

● Ad-hoc parsing of text is often very appropriate, and XSLT 3 has lots of tools to help
you.

● Oh, and Eddie 2? He’s doing fine. Thanks for asking.

Slide 27

</talk>

Liam Quin

Delightful Computing

https://www.delightfulcomputing.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

